(m)

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY, AND MANUFACTURES. vol. Lx:- - -

NEW YORK, JUNE 8, 1889.
[83.00 W MEAR.
the new lomdon double track railroad bripar Providence and Boston routes have been ferried New York, and has perhaps been welcomed often by
AND DRAW SPAN
across the stream on a special ferryboat, which was $\begin{aligned} & \text { New York, and has perhaps been welcomed often by } \\ & \text { the }\end{aligned}$
We illustrate in the present issue the great railroad capable of carrying an entire train of cars. The cross- the route. But in a few weeks the boat will tak bridge crossing the Thames River at New London, ing of the "Groton Ferry" has come to be looked for her last trip, and the trains will then eross the estuary Conn. Hitherto the : "Shore Line" trains on thè as a regular incident of the trip between Boston and (Continued on page 357.)

LOADING THE PIVOT PIER WITH 2,700 TONS OF PIG IRON.
MAP OF NEW LONDON, SHOWING THE NEW AND OLD ROUTES.

THE NEW LONDOX DOUBLE TRACK RAILROAD BRIDGE-THE LARGEST DRAWBRIDGE IN THE WORLD,

§̌ieutific Aurricau.

§rientifit American.

establisheid 1845. PUBLISHBD WEEKLY AT
No. 361 BROADWAY, NEW YORK.

D. munn.	A. IE BEAC
TKRMS Pon the scientipic ammican.	
One oopg, one yeer, for the U. E or coman.	
(ene	
Asascalla asel New Tealand.-Those who desire to recatve the Bcientipic Aminicax, for a litile over one year, may remil sat in eurrent Colonial bank notee. Addrose	
The selentite American sapplement	
atatinet paper tn	
S.OO myear, for U. B. and	
will be sent for ome rear, to any sadrees in C. 8. or Canada, on receipt of	
The anteot wey	
Asetralis and New Zealand.-The Scimstivic Amsmican and AUPPLEMENT will be ment for a lictle over one year on recelpt of \& cur reat Colonial irank aotes,	

NEW YORK, SATURDAY, JUNE 8, 1889.

table of contents of
SCIENTIFIC AMERICAN SUPPLEMENT

[^0]an expected bevolution in stean navigation A new and interesting experiment in marine propulsion is to be tried soon in this harbor. We allade to the new water jet boat invented by Dr. Walter 11 . Jackson, of this city. The vessel is 100 m . long, 100 applied to a Worthington punp, and used to eject a suall stream of water-a three-quarter inch jet-from the atern post, at the keel line. The water is to issue noder the enormous pressure of $2,500 \mathrm{lb}$. to the square inch, and a apeed of between thirty and forty miles an hour is expected by the owners-a velocity far in ex hour is expected by craft aflont. The atern water jet cess of any other craf isues oakes the place of a rudder The faucet is operated by a lever in the pilot house. A jet pipe also extends from the main pump to the bow where a similar faucet is located, also connected with the pilot house lever. Thus the pilot has absolute control of the vessel. By simply moving the lever, the boat can be instantly started, turned, stopped, backed, or made to spin around on its axis like a top. All this without stopping the driving pump. No jarring, noise, or vibration is felt, even at the highest speeds. The new boat is nawed the Evolution, but, perhaps, a better cognomen would be Great Expectations, for the prowoters are sanguine the little vessel is the precursor of a grand and rapid revolution in the art of stean navigation. They are confident the days of common marine engines and propellers are numbered, and will soon be thrown out of all first class ships as old iron, and the diminutive water jet substituted. A large saving in space, greater ceonomy in fuel, increased safety, improved comforts for passengers, are mentioned as a few of the important results that will at tend this outflow of high pressure water.
The water jet, as a hydranlic system for the propul sion of vessels, has been many tines tried with excel lent results, but has not proved economical as compared with the ordinary marine engine and propeller. in the back numbers of the Scikntific american these hydraulic motors, with illostrations of the vesseis (see, for example, Suppligment, Nos, $308,354,415$, 499, also 40, 561). In most of these cases it has been the aim of the projectors to make nse of as large water jet as possible, and a low water pressure, which involved the movement and discharge of a great vol ume and weight of water.
Thus a water jet of $5 \cdot 38$ square feet area and a ve ocity of water discharge of 30 feet per second has been employed. This was in accordance with high seientifle anthority, such as Prof. Rankine, who maintains the most efficient propeller is that which sends the largest volume of water astern at the slowest speed. A variety of reasons and calculations have been put forth by others to prove that the small water jet, with high pres-
sure and high speed, cannot possibly be as effective or sure and high speed, cannot possibly be as effective or economical as the big pipe and great weight of slow
water. But it is a curions fact that in several subsewater. But it is a curions fact that in several subsequent experiments reduced water jets ($71 / /$ inches) and higher water velocity (66 feet per second) have given better results,
Dr. Jackson's scheme involves a radical departure from the hitherto accepted theories and calculations of water jet propulsion. In his new boat Evolution he reduces the old 5 square feet area discharge pipe down to an area of less than half a square inch (0.44 square neh), and increases the velocity of the water discharg so doing he claims to secure superior practical results. On the trials last summer of his small experimenta boat Primaviata, he used a jet only three-eiphths of an inch in diameter, with a water pressure of 000 pounds to the inch, and obtained a speed of ten to twelve miles per hour. Many experiments were then made with thi boat The apparatus was crude and hurriedly meis boat. the reaplts yielded was cruace and hurriedy made caluble towled valuable knowledge concerning the practical propelling knowledge is embodied in the velolies; and this new nowiedge is enbouied th the novel cratt which is now dollars elean cash, have been putisto dollars, clean tribut hy who fully belleye in the of number of able eitizens, the in berme calculation of the ingenlous inventor. Dr. Jackson is a man of varied seientifice attainments, extensive meehanical ex-
perience, and good judgment. His inventions relating perience, and good judgment. His inventions relating In this connection proved highly successful.
In this connection we would suggest to the naval authorities at Washington the propriety of supplying all of the new war ships with hydranlic fet pipes and pampe, as means for facilitating the navigation of the vessels and promoting safety. There appears to be no reason why how and stern jets might not readily be pot in, at no great cost, which would be highly useful io action and otber emergendies requiring rapid man euvering of the ships.

88,200 barrels of flour is the report of a recent one week's work for the mille at Minneapolis. Is there any other place in the world where such a large production
is realized?

The Annual Meeting of the America Mechanical Engineers.

On May 21 the annual meeting of this society opened at the house of the American Society of Civil Engi neers. The report of the secretary, Mr. R. W. Pope, was read. It show acd manding, and an increase at the average rate of flive per month, a very practical testimony to the increased interest taken in this branch of science by engineers. Mr. Edward Weston, the retiring president, after an address on the mportance of enlarging the scope of the Institute's work, introduced his successor, Prof. Elihu Thomson, who, in his answering address, followed the same line of thought, and spoke of the opportunities before the nstitute for work in the interest of electrical engineering. On May 22 the reading of papers began, the sesion beginning at $10 \mathrm{a} . \mathrm{m}$, The following papers were read and discussed

Some Results with Secondary Batteries in Train Lighting," by Alexander \$. Brown, Pennsylvania Raiload.
"The Inherent Defects of Lead Storage Batteries," by Dr. Louis Dunean, Johns Hopkins University.

Motor Regulation," by F. B. Crocker, instructor in lectrical engineering, Columbia College.

Magnetism and its Relation to Induced Electromoive Force and Current," by Prof. Elihu Thomson, Lynn, Mass.
"The Relation between the Initial and the Average Efficiency of Incandescent Lamps," by W. H. Peirce Chicago, Burlington \& Quincy Railroad.

The Efficiency of the Are Lamp," with an introductory note by Prof. E. L. Nichols, by H. Nakano, Cor nell University
"The Spiral Coil Voltameter," by H. J. Ryan, Cornell University.
"The Personal Error in Photometry," by Prof. Edward L. Nichols, Cornell University.
The titles of the papers and the authors' names vouch for their interest. Prof. Nichols brought out one very practical point: that in the use of the Bunsen disk with reflecting mirrors the observer was liable to introace a personal error if he adopted the stereoscopic nethod of inspecting the disk, or used one eye for the right side and the other for the left. This babit, which many photometrists fall into, is unquestionably a bad one, and its treatment by Prof Nichols is of interest to gas engineers as well as to electricians. In the evening a special ression was held at the College of the City of New York to listen to Prof. H. A. Rowland's experimental lecture on "Modern Views with Respect to the Nature of Electrical Currents." Many well known electricians as well as the members of the Institute were present at this lecture, and the room was cro

The Leland stanford, $\mathbf{M r}_{\text {v }}$, University.
Mr. G. T. Shepley, the architect of the Leland Stanford, Jr., University, states in the San Francisco Build ing Advertiser that the work on the large dormitory in connection with the university has been commenced. The buildings completed, or nearly so, number four teen, and consist of lecture rooms, reception rooms, laboratories, and all the requisite departments for complete educational course. The dormitory will be situated about a thousand feet from the other build ings. It will be 875 by 145 , four stories high, present ing a very imposing structure. The material used is San Jose stone. The building will accommodate two hundred students. Single rooms will be 18 by 26 , and double rooms 24 by 23 . Altogether there will be from one hundred and twenty-five to one hundred and fifty rooms. There will only be one dining room for the two hundred atudents, and this will ocenpy the central por tion of the lower foor. Theltithen, landries, are in the basement ; but, as the dining room is raised considerably above the floor on which it is situated, there will be plenty of light and air afforded for the basement. All the fifteen buildings will be heated by team and lighted by electricity from one central station placed in the rear of the quadrangle. The university will not resemble any of the Eastern universities to any great extent. All the old colleges are buil around quadrangles, and in this one point the Leland Stanford, Jr., University will resemble them, but in no other. There will be a magnificent view from all the sleeping rooms of the dormitories.
M. De Fonvirlige has made very curious electrical experiments at the summit of the Eiffel tower. Some, is considered, will lead to important considerations of acientifle character, which will be continued others are of a more practical character. The atmophere round the tower at this elevation is free from all influence of the soil, as would be the case at the top of a mountain, and the air is in an extraordinary active tate of electricity. The tower will, it is said, be the most perfect conductor of eleetrieity during a storm, and all within it will be in a state of entire immunity against all danger from lightning. The pretty idea has been suggested of having a carillon of bells at the top, which will play every two hours.

The Paris Exhibition.

A MAGNIFICENT AFFAIR-NOVELTIES IN THE AMERI Paris, May 16.
It is conceded on all sides that this exhibition is truly magnificent affair. No previous exhibition ha approached it, either for size, beauty, or the quality and value of the exhibits. "I have been to every ex hibition at which the United States government has been officially represented, and unhesitatingly assert Mr. Thomas R. Pickering, the superintendent of machinery of the American section. "There never was so grand an exhibition, and it is questionable if there will ever be such another," said Mr. Doane, of Messrs. J. A. Fay \& Ca. The Eiffel tower, which no many people stigmatized as ugly and unattractive
conceded to be a thing of grace and beauty.
My first proceeding after the opening day, of which you have doubtless received full advices, was to take a general survey of the "Paiais des Machins," whose preliminary survey of the main buildings, so as to give your readers a general idea of the situation, which if as follows :
Except in the "Palais des Machins," the French are the most behind, and even there much of the ma chinery has been standing still, because there is no steam supply. This defect, however, will be remedied

The American section of machinery shows more pro gress in design and more valuable novelties than any other section, and many claim than all the others put ogether, and it seems to me at present writing that the claim is well founded.
The English section is small and possesses no distinguishing feature that I can so far see, except that of copying American designs,
ether astonishing degree
This is done with so much persistency, and old Amercan designs are claimed as English with ao much ef rontery, while more advanced and superior American designs are so pooh-poohed by some of the English have encountered here, that I determined to "speak ut in aneeting," and put this matter straight at once. wo I took a hasty survey
with the following result :
On a milling machine I found the disk friction feeding device of Wiliain Sellers \& Co., of Philadelphia, whose patent has expired. I aiso found a twist drill grinding machine whose sole novel feature is copied from the Sellers twist drill grinding machine. I also ound twist drills with the line down the center of the flutes, after the Morse Twist Drill Company's patent. Another piece of piracy is a planer chuck that has been patented in England, and is commanding a large sale. One of its chief points, if not its chief one, is a direct copy of the main feature of Thomas' American patent planer chuck, this particular feature having been pointed out in the Scientific American, in 1875 or 1876. The rack feature now so common in American practice (the patent having expired) is copied, the only variation being that a single set screw is used, beibg placed central and abutting against a convex projection, so that the set serew point will bed fair, notwithstanding that the jaw may be at an angle for taper work. The Fox lathe as it was made in the United States seven or eight years ago appears, and several copied modiflcations of it, all being claimed as English. But the more recent American improvements are lacking, such, for example, as making the bed in two parts, so that
the tail stock end may be taken up by raising that part the tail stoek
of the bea.
I found turret head lathes here with no stop motion, the workman using his calipers, ete., in the old fashioned way. There are milling machines of English make carefully copied from American designs, with not a perceptible English feature about them. One or two of them have copied the movable bar for the dead center of the spindle. Another English machine has on it the American feature of a wire feed. Of a cutting-off machine copied from American practice an English machinist said to me, "It's a very good machine, but don't you think such machines an unnecessary refinement 9 " for otherwise 1 should have been told that it was an old English design that had been thrown away in England long ago. Your readers will doubtless picture this individual outting up large rods or shafts in the blacksmith shop, chipping and filing the ends square for the centers, truing up the ends and cutting the pieces to length. and thus spending as mach time and money on the job by the time it was ready to be turned up as the whole
The ditor of promin bees used
paper was her a prominent English engineering news paper was here last week, and, I understand, expressed himself rather strongly on the poverty of the English section, and at least one engineer gave me to understand that the English machine tool makers would rather be excused from meeting their American competitors in any market unless the prices were over-
wheiningly in their favor. There is only one Ameri-
can design of prominence that, so far as I have yet observed, is exhibited in the English section and not
claimed as of English origin, and that is the Horton lathe chuck.
I next turned my attention to the United States seetion, to see what there was put forward as new that was copied from English or other foreign designs. I found nothing, but 1 found much that was new and very interesting indeed. I consider the cutting tool design and arrangement on Warner \& Swazey's special lathe for brass work one of the best things I have for many a long day, and it is entirely original.
A walk through the other sections of the Palais des Machins shows that although the English are the greatest, they are not the only sinners, except it be in refusing credit to the American origin of their deAigns.
Amer et cie., Bale, Switzerland, have the Sellers rack and pinion (with its rolling contact) on their planer but not on the pulley end of the pinion shaft, a com bination, as is the case with the more recent Sellers naehines. The Ateliers de Construction Oerlikon Zurich, have milling machines copying those of recen American design, and also lathes with the features of the "Fox" pattern. The tail stock of one lathe is con-
structed exactly like the dead center block used with structed exactly like the dead center block used with
American milling machine chucks. Baruqnand, Paris, American milling machine chucks. Baruquand, Paris, exhibits a screw machine haying the Fox construction in connection with a Brown \& Sharpe turret head and
the American die and holder used in American screw wachines.

A large amount of emery grinding machinery is shown, all embodying items of construction of distinetly American origin, with a variation of details. Of a great many of these it may be justly said that the parts that are new are not good, and the parts that are good are grinding machinery, and, taken as a whole, it is very creditable indeed-much of it of the very first order and original. The Tanite emery wheel (Stroudsburg, Pa. is a great favorite here.
Some of the details on French engines are, to my mind, decidedly objectionable, but the workmanship is, as far as I have at present observed, thoroughly guod. Two engines of the Wheelock (U. S.) patent are
here, one of them a pair of compound condensing engines and the other a high pressure. The latter has a flywheel of about 14 feet diameter, with internal gear ing inside its rim, a feature for which there is, in my opinion, nothing favorable to be said
"High piston speed" has not as yet taken much hold in either England or France, although the Armington Sims engine (Providence, R. I.) is a favorite.
The straight line engine (Syracuse, N. Y.) will run a soon as it can get steam, and I think it will surprise good many to see her speed and quiet running, not withstanding that her cylinder is not bolted to the foundation, but merely rests on it. This engine has a flexible steel belt to drive her section of the line shaft ing (another American novelty), and this brings to mind that I did see one thing of English origin that has United States, and that is link leather belting, of which I hear very good reports.
American engineers here speak very highly of the de sign of the shafting girders, which, being continuous and flat on the top, furnish a track on which an electric hoisting crane runs. This crane is very highly spoken of by those who tried it when setting their machinen on their foundations or unloading them from cars or trucks. The management of the United States commission here is giving a great deal of unalloyed satisfac tion, and everybody in the United States section would be entirely happy if steam was only turned on, so that they could run their machines,
There is a large exhibit of French locomotives, the workmanship being good, and I wish I could say
much of the designs ; but of this, more hereafter.
much of the designs ; but of this, more hereafter.
There are not as many printing presses here as th
There are not as many printing presses here as there were at Philadelphia in 1870, and they are all indebted o the punctaring device of the Bullock press (Ameri can), which was first exhibited at the American lostitute fair in 1868, I think, and that rendered web perecting printing presses possible. There are a great many stean engines and paper making machines, and a very full line of grinding machinery.
The general American department is, it must be coneased, disappointing. Tiffany has a flne exhibit, and o have the Gorham Manufacturing Co. Messrs. Lyons, of New York, have a very fine exhibit of umbrellas, better than any others I have seen, notwithstanding that an English umbrella has been supposed to possess \& Goe virtues possible in an umbrella. Around Bal crowd the Meriden Britannia Company's exhibit is well splen of There is one nnobtrusive exhibit bere that has no one attending it, that wood workers and and carriage buncrs inger over, and weritory may or it is cruly Auer an \mathcal{H}. Shepard, of New Her an exhic of losely examining the specimens), "I would like to closely examining the specimens), "I suow that man. He is a master of his subject." Drake
$\& \mathrm{CO}$ (st. Panl, Miinn.) have a beantiful display of pettrified woods, and no handsomer or moro attractive memento of the exhibition can be found than one of ome future time
Dunlap \& Co. (New York City) exhibit a fine ease of ats, and it is getting to be understood here that a bet er hat ean be got in New York than either in London Paris.
The French general department is not yet fully opened. The English general department is disap. pointing, while the Austria-Hungary department is simply elegance itself, and throws into the shade all competitors. Indeed, it cannot be said to have any competitors. The Russian department is very much better than one would anticipate, excelling in swall bronzes.
There is a fine display of paintings and sculpture out the galleries in the latter department are not open, while the department is in an untlished state as far as he exhibits are concerned, heads, legs, and arms lying about in all directions. But the art departments are going to be very beautiful and delightful. There are not as yet any seats in the picture galleries ; but there doubtless will be, as the galleries are so numerous that he crush there was at the Centennial galleries at Philadelphia in 1876 is not likely to be repeated here.
I heard to-day that in the construction of the Palais des Machins there were 60 men killed and 400 wounded, and perhaps it will do no harm at this late date to say that I was told in the machinery department of the Centennial exhibition of 1876 that during the hot spell, when the thermometer ranged from 100° to 104°, eleven people died from sunstroke recpived in that depart. ment in one day. Some people, however, attributed these deaths to the water, which in that year was anything but good.
There are no catalogues as yet, nor are the exhibits numbered in many cases, while in others there are two or more numbers, as is the case with statuary that has been exhibited at the Paris Salon, the old numbers remaining on a large yellow label, and some swall white abels bearing different numbers accompanying them, Were iner these latter are correct for this exhisitio here is nothing to indicate. Joshua Rose.

A steel cruiser named the Lalande has just been launched from the Chantiers de la Gironde, at Bordeaux. The Lalande is 316 feet 8 inches long by 81 feet 8 inches beam. Her displacement is 1,877 tons and he average draught of water is 16 feet 8 inches. Her en gines, which were furnished by the Creusot Works, will work up to 6,000 horse power with foreed draught nd when the engines are making 140 revolutions pe minute it is expected that the ship will attain a speed of 191/2 knots per hour. The Lalande will carry nine guns, of which three will be quick-firing and four re volvers. A torpedo cruiser named the Vantour has been launched at Toulon. Her hull, which is of steel, neasures 226 feet 8 inches between perpendiculars Her engines are to work up to 8,200 horse power, and she is expected to attain a speed of 20 knots. The Vantour will be fitted with four lance torpedo tube oruiser has just made her trial trip. The average speed on the measured mile was $193 / 4$ miles per hour.

Soapstone and Its Unes.
A writer in a London journal calls attention to the nappreciated uses and preservative qualities of soap tone, a material, he says, which possesses what may be regarded as extraordinary qualities in withstanding atmospheric influences, those especially which have so much to do with the corrosion of iron and steel, and from experiments made it is said that no other material is capable of taking hold of the flber of iron and steel so readily and firmly as this. In China soapstone is largely used for preserving structures built of sandstone and other stones liable to crumble from the effect of the atmosphere; and the covering with powdered soapstone in the form of paint on some obelisks in that ountry, composed of stone liable to atmospherm intact for hundreds of years.

Electrietisy and Light.

Dr. Moser (Kder's Jahrbuch fur Photographie) draw. attention to the following curious phenomena: The leaves of an electroscope are caused to diverge hy charging with, say, 150 cells. On allowing a ray of direct sunlight to fall on the instrument the divergence is increased, and it returns to its original amount when the light is eut off. A common match (sulphur with phosphorus tip) will glow in the dark when brought trophorus. The body such as the cover of an eleo falls when a ray of sunshine falls on it, just as it doen when connected to the zine of a battery. The effect is distinetly electrical, not thermal, as it vanishes when the apper and lower mercury columns are short-circuited by a wire.

AN IMPROVED VEOETABLE CUTTER. A machine for cutting up cabbages and other vegetables is illustrated herewith, and bas been patented by Mr. Johann A. W. Justi, the small hgare showing a bottom view of the machine. The supporting frame has rails, on whieh a sliding frame is mounted to be reiprocated beneath a cabbage reeeptacle, a weight

Sa. Fa VY
fogtre veoetable cotter.
box being held between uprights to press the vegetables in the receptacle against the cutters. In the bottom of the receptacle are strips having metallie riction plates, against which move friction plates on the reeiprocating sliding frame, the bottom of the frame also having friction plates moving over friction plates on the rails. The frame bas a transverse opening through which the knives alternately project, and through which the cabbage passes as it is cut. Beneath the frame is mounted a rock shaft carrying adjustable entters, which may be moved to vary their projection, and may also be detached for sharpening projection, and suay also be detached for sharpening. The cutters are alternately held in position for cutting y ather power, and in each direction of movement or other power, he frame ane of the cill Ere, the other curther with For further partion ion, addres. Charleston, S. C.

AN IMPROEED GUIDE FOR BAND-SAWS

 A guide for band-saws, in which the parts may be readily and expeditiously manipulated, and the guide adjusted to any width of saw, is illustrated herewith, and has been patented by Mr. Charles R. Backer, of No. 1931 West Indiana 8treet, Evansville, Ind., Figs. 1 ahd 2 showing a plan view and longitudinal ver tical seetion of the deviee. The gaide-bed is ribbed, and has pivoted spaced jaws sliding upon it, one jaw having an adjustable clamping bloek on it outer end and the opposite jaw upon the same end, with an opposing fixed clamping bloek, there being angular guide blocks adjustable upon the guide-bed, the vertical members of these blocks projecting upward between the opposing jaws, and having grooved contiguou

BACKEAY GUIDE POR BAND-BAWs
faces, with metal blocks serewed in the grooves. The jaws are adjustable endwine and lateraly. The coublocks have dove-tail or wedge-shaped grooves in which wedge-blocks are inserted, the guide-blocks being preferably of iron or steel, and the wedge-blocks of brass. The latter blocks are adapted to form a guide for the heel or inner side of the saw, while wooden blocks constitute a guide for the outer or cutting edge. The device is adjusted to any width of saw through the screw shown in Fig. 1, and may be constructed and adapted for either a right or left handed mill.

A Telegraph Man oatwitted.

A few days ago several men from the electrie light station dug a hole for an electric light pole opposite one of the finest residences in Malden, Mass. The owner of the residence, in the meantime, secured a man and told him to go up into the woods and dig the first tree he could find, and hurry back and place it where the hole for the electric light pole was. Before the men commenced to raise the electric light pole, the owner of take a drink, which they all did. There the owner detained them long enough to allow the man sent for the tree to come back and plant it. The others did not dare to remove the tree, so they put the pole into their wagon and drove off.

AT TMPROVED SASH FASTEAER.

A simple locking device, whereby the upper and lower sash of a window may be simultaneously locked, irrespective of the position that the upper sash may oceupy, is illustrated herewith, and has been patented Cincinnahn H. Buettner, of No. 108 Pleasant Street, how thet, Ohio. In our illustration, the dotted lines how the position occupied by the parts of the device whea the sash is not locked. A plate is attached to the inner face of the window frame, just above the lower sash, there being a stop-pin near the upper edge of the plate, and another similar pin near its center.

At each side of the center a locking arm is pivoted, the upper one curved downward and outward, and having an elastic bearing-block, preferably of rubber, secured in its horizontal extremity. The lower arm is alightly curved from its pivotal point, and has near its extremity a lug extending at right angles to the body. Each of the arms has a spur near its pivotal point, these spurs being adapted to engage each other when the upper arm is essentially at a right angle to the lower one. When the upper arm is pressed downward, so that its rubber bearing-blook will press against the inner side of the upper sash, the spur on this arm bears against the spur on the lower arm, foreing the latter outward, when the other end of the lower arm is carried inward until it engages with the lower sash, upon the upper surface of which its lug has a positive bearing. The further the upper arm is carried downward, the tighter the lower arm binds against the lower sash.

Atiraction of Gravitation

At the recent Royal Society soiree Mr. C. V. Boys, F.R.S., contributed a portable apparatus for demonstrating the attraction of gravitation. The movable bean consists of two little masses of lead only one centimeter long, to which a galvanometer mirror is attached, and this system is suspended by one is attached, and this system is suspended by one of Mr. Boys filamente of quartz, by which the actan exhbled rendered possible. Aroand this lead wigh a cy ncer which carries two cyinadical lead weights each weighing a Kilogramme, and the attractive influence of the heavier masses from the tite movable beam was indicated by the movement of a spot of light through some fifty divisions of a scale axed at the forther end of the room. He forms flaments of quartz by means of a bow and arrow, the tall of the arrow being attached to a lump of molten quarts, the latter being drawn out into an excessively fine thread during the flight of the arrow, as if it had been a filament of melting sealing wax. A second experiment shown by Mr. Boys was designed to show the extraordinary insulating properties of quartz. In this experiment a pair of gold lenves forming an elec-
ong, and although the surrounding atmosphere is kept saturated with aqueous vapor, the gold leaves retain their electrical charge for several hours, although, I glass were used instead of quartz, the charge would be dissipated in a few seconds. Moreover, the quartz ay be dipped in water and replaced with its surface tudded with globules of water, and it appears to insuate as well as before.

AN IMPROVED PINCH BAR

The bar shown herewith, for moving or atarting cars on railways, has been patented by Mr. Peter C. Forrester, of Wilkeson, Washington Ter. The bar proper is of the ordinary form, pointed with steel at its nose end,

FORRESTER'S PINCH BAR.
where it bears upon the car wheel. A fulcrum piece or attachment, to bear on the rall, is made in the form a sliding block, adapted to be readily slipped on or off the bar, as shown in Fig. 1. It is made with a sharp tooth on its under side, pointed with steel, to take a firm bite on the rail, and is fastened in the required position by a set serew, or may be so secured by a wedge or ferrule. Fig. 2 shows a modifled form of the fulerum piece or sliding block, in which the tooth, instead of being made integral with the sliding block, is made in a separate piece, and held in position by clamping it to the bar within the slotted body of the sliding block.

AN IMPROVED GTEAY-ACTUATED VALVE.

The illustration herewith represents the valve arrangement of a steam pump in which the valve controlling the main piston is actuated by steam, and is in its turn controlled by other valves which have their action governed by the main piston. This valve forms the subject of a patent issued to Mr. John W. Gheen, As toria, Oregon. Fig. 1 represents the application of the valve to a pump complete, and Fig. 2 is a vertical longitudinal section of the steam cylinder end of the pump. The steam chest is constructed above the main valve to form a cylinder, to receive within it a piston attached to the valve, this piston having double heads and reduced opposite terminal extensions, arranged to work as pis tons in and out of reduced cylindrical chambers at opposite ends of the body of the cylinder. Steam is admitted to the valve chest between these heads in the usual way. At opposite ends of the main cylinder are two small cylinders, connected intermediately of their length by passages with the reduced terminal chambers of the valve cylinder, these passages being again connected by branch passages with the enlarged portion of the valve cylinder, so that the heads of the piston portion of the valve may control them. Thesmall cylinders in each end of the main cylinder have each a live steam port and an exhaust, and within them pistons work freely as independent valves, each having a stem normally projecting within the main cylinder. These valves are operated in one direction by the main piston coming in contact with their stems, and are moved by the pressure of steam on their backs in an opposite direction. This invention is not only applicable to direct-acting pumps, but also to direct-acting engines for other than pumping purposes.

OHEEN'S stEAM ACTUATED VALVE.

June 8, 1889.]

§rientifir Americau.

JERBOAS, MARMOTS, AND LEMMINGS IN THE ZOOLOGICAL GARDEN OF BERLIN.
The bird houses of the Berlin Zoological Garden always contain some small mammals, for which a better shelter cannot be found. Here they receive very little attention from the majority of the visitors, but this only adds to the interest of the real friend of animals. We refer to the three small rodents shown in the accompanying illustration, but seldom found in the accom
captivity.
The long-legred, thick-headed jerboa (Dipus aegyptius, Lichtst.) is a native of northern Africm. A true child of the desert, as Brehm calls them, they live in companies in places which their peculiar organization enables them to inhabit. In the construction of their extremely long hind legs, as well as in the unusual formation of the organs of the senses, especially the size of the eyes, by which the head is made broader than it is long, they bear an unmistakable resemblance to birds ; and in fact, if the jerboa is to live in the vast desert, the surface of which is scarcely covered with the thin reed grass, he must rival the birds in activity and to escape from his enemies. For this latter pur
judging from observations of their ways when in eaptivity, their habits must be about the same as those of would be caused by the variations in the climatic conditions of their native haunta.
The lemming (Myodes lemmus, Pall.) is as wel known by tradition as it is little known by actual sight, and is the little, thickset, and short-tailed field mouse which, by its migrations, has given rise to the numerous fables and to a certain mysterious light in which it appears in the natural histories. Of course we have long since learned to trace these migrationswhich are not as numerous nor as regular as the oldime stories would lead us to believe-to their real ouree; that is, their rapid increase in a favorable climate and the consequent scareity of food. Even without this mysterious nimbus, the lemming is a very interesting little creature, which, like the field mouse, bears the same relation to the common monse as the hamster. Like the latter, the lemuing is thickset, has a short tall, and its markings are more or less regular in color The individuals differ in this respect, the ends of the black hairs sometimes being light and sometimes not The lemming also resembles the hamster in character,

Tetanas Treated by Absolute Rent.
Prof. Rensi, of Naples, records several casen of tetanus successfully treated by absolute rest. The method advocated is as follows: The patient's ears are closed with wax, after which he is placed in a perfectly dark room far from any noise. He is made to under stand that safety lies in perfect rest. The room ie carpeted heavily in order to relieve the noise of stepping about. The nurse enters every quarter of an hour with a well shaded lantern, asing more the sense of touch than sight to find the bed. Liquid food (milk, eggs in beef tea, and water) are cerefully given, so that mastication is not necessary. Constipation is not interfered with. Mild doses of belladonna or secale are giren to relieve pain. This treatment does not shorten the disease, but under it the paroxysms grow milder, and finally cease. Numerous physicians attest to the value of this treatment.-Bulletin Med.

Consumption of Ties.
Assuming the entire railroad syatem of the United States to be 160,000 miles, as appears from "Poor's Manual," with the addition of the lines in construction during the current year, and taking 2,640 ties per mile

JERBOAS, MARMOTS, AND LEMMINGS IN THE ZOOLOGICAL GARDEN OF BERLIN.
pose the perfect sand color of his long, soft coat serves him well. This color is formed by a blue gray gronnd and the light tips of the hairs. The fore part of the arrow-like tail is dark brown and the rear part white. The fore legs are very short, and are generally held close to the body, being used in eating and in digging the eaverns for the company, but not at all in traveling, which is accomplished by the use of the hind legs and the tail. When moving short distances the jerboa takes little tripping steps, but during flight it takes jumps that are colossal, comparatively speaking, and these follow each other so quickly and regularly that the animal seems to be flying over the ground.
The leopard marmot (Spermophilus hoodi, Richs.) is a North American representative of this species of rodent, which is spread over the northern hemisphere. They live gregarlously in the plains of the United States, and are known by the pleasing and striking marking of their fur with stripes and spots, which will be better underatood by a glance at our illustration than by even a long description. This pretty coat and their activity and intelligence hold the visitor who has the good fortune to see them a long time at their glass box, half filled with earth. The greater part of the day they spend in their burrow, where they carried a quantity of hay and food last fall. Since then they have been sleeping their winter sleep, from which it was difficult to waken them that they might serve as models for our illustration. Very little is as yet known about the life of these little ereatures when wild, but
showing the same courage, amounting to foolhardiness, for the little creature will leave his home to defend it by squealing and biting even when the contest is with men. But, while the hamster is disagreeable and even dangerous when angry, the much smaller lemming pro duces only amusement and merriment by his bursts of passion. Brehm's deseriptions of the droll actions of these Llliputians when any one passes through their district, threatening the domestic peace of one or another by coming, voluntarily or involuntarily, too near their holes, are very entertaining. The Norwegian lemming lives on the high monntains of Scandinavia in the region between the growth of trees and the per petual snows. Still farther north, in Lapland, he lives in the swamps of the plains, for he knows how to use every dry spot. Other species of the genus are found, in Asia and North America, throughout the entire frigid zone. It is difficult to keep lemmings in captivity, and those under my care are the only ones I know f. Our picture is the first one drawn in Germany by a ma

Chicago will probably have one of the finest libraries in the world in the course of a few years. Mr. W. L. Newberry, one of the earliest residents, left the sum of $\$ 250,000$ for the purpose, and a temporary building has been used for some time. It is now intended to
orect a magnificent edifice, capable of holding 300,000 volumes.
frack, we have in use at least $422,400,000$ ties. This estimate, large though the total appears, is under the mark, as no railroad uses less than 2,640 ties per mile and many of the roads with heavy traffic have 2,818 , nd in a few cases more.
The life of these ties varies according to their quality nd the climatic conditions ; but in the East, where only the best ties are employed, the average life i ound to be about six years, while in the West, where poorer quality of timber often has to be accepted, and where dry rot and other disadvantages have to be con ended with, the average life is from three to five years o that even after allowing for a few exceptional cases In which ties may last ten years, the average life of ties all over the country cannot be counted as more than ive years.
It follows, therefore, that the annual consumption must be about $84,500,000$, which, with steady increase of railroad building, must soon exceed $100,000,000-$ gigantic demand to be satisfied from our forests each year, when we consider the many other calls upon them, and the fact that at present virtually nothing is being done by the government or the people to replenish our source of supply.
The certain rise in the price of wooden ties, when these facts come to be fully appreciated by the lumbermen who control so large a part of the available timber area, will force the rallroads to seek the best solution of the question in the adoption of a metal tie.-Paciflc Lumberman.

Serew Prepellers.
The eecape of her Majesty's ship Calliope from th harbor of Apia at Samoa, when the German and
American squadrotas had to suceumb to the fury the hurricane, was recently noticed in our columns, r ference being made to the excellence of the engines with which the vessel is fitted, by means of which she was enabled to make headway against the storis. On this topic something more may yet be said, and the subject is one well deserving full consideration although at first the allusion may exeite an incredu lous swile, yet the fact that the serew of the Calliope was made of manganese bronze will be found, after litule investigation, to be a circumstance that ought not to be disregarded.
We refer to the subject not merely for the sake of demonstrating the advantage which there is reason her propeller, but in order to deal with certain data, her propelier, but in order to deal with certain data, tion really offers a substantial gain in the matter of speed. It is to be remembered that the Calliope made her way againet the atorm simply at the rate of half a knot per hour; of eoarse her inherent speed was considerable, but the storm neutralized the whole of it, except this se termed the effective speed was very little, but that little was sufficient to save the ship. The Calliope may never encounter the like dilemma again, and it may rarely happen that an extra hal knot per hour will rescue a ship from destruction. Yet this litthe halt knot, continuously maintained, is not to be despised, espeeially on a long voyage. Or if the extra representing in the aggregate a very appreciable sum of money.
Ressons are fortheoming why a serew propeller made of manganese bronze should give a better rate of speed than one of gan metal or steel or any other metal yet known. But, in the first place, we may fall back on ascertained facts. It may be readily conceded that a commercial body like the Peninsular and Oriental Steam Navigation Company would not enter upon an estensive suloption of manganese bronze for the serews rantage to be gsained by doing so. Eleven of its ships are thus equipped, and a striking example on this point was wentioned a year aco, before the Institscompany's superintendent engineer. The serew blades of the Bailarat, made of steel, had been exchanged for thers made of manganese brome. In this instance although the gnin in speed was ouly abont a quarter of a knot per hour, the effect was seen in a quarter between eight and nine tons of coal per day or between elght and nine tons of coal per day, or a Eagiand and Australia. The saving in coal represented about half the first cost of the bronze blades. This comparison is the more valuable, owing to the fact that the dismeter, pitch, and surface of the propellers were the same in both cases.
Another very utriking instance is furnished by the Australis and Zealandia, two steamships engaged in the mail service between Australia and San Francisco. These ships, originally fitted with steel propellers, had manganese bronze blades of exactly the same surface and pitch substituted. The speed was then foand to be increased nearly one knot per hour, and the passage was made in two days' less time. A very satisfactory pecuniary result has been seeured with regard to these vessels, by the acquisition of postal premiums, the amount being such as to pay many times over for the sost of $\begin{aligned} & \text { titing the new propellers. Eight ships }\end{aligned}$ of the White Star line have propellers of manganese bromze, as well as two belonging to the Cunard Couspany. On the Inman line we have the City of New York and she City of Paris, the latter famous for her atraordinary ipeed just accouplished on her first voyage to America and back. The Pacilfe and Orient Steam Narigation Company has manganese bronze propellen for the Orizaba, the Oroya, and two other vessels of its line. The North German Lloyd Steamship Company has done the same with eight of its shipe. One of these, the Lahn, of 8,000 indicated horse power, lately tande a remarkably rapid voyage.
Sowe time ago the Seottish Oriental Steamabip Co pany substituted manganese bronze propellers for others of iron and steel in four of its ships, the inereased apeed ranging frow two-thirds of a knot to one knot per hour. The four other steamers belonging to this company were fitted with bronse blades when built. Other lastances might be meationed, bat theee will in dieate the appreciation which steamship companiee bave entertained for this particular kind of bronze, and there is every prompeet that the use of the metal for propellert will extend. Ontaide the circle of the mer cantile marine, we have the example of the British Adsuiralty. The Colosens was fitted with twin serews of manganeee bronze after a series of experiments on the strength of this material as compared with gun metal, the trials being made at the works of Mesers. Maudelay, soos \& Field, in the presenee of the Ad-
miralty inspector, with the result that the manganese of gun metal. Consequently the adoption of the bronze ffected a saving of from 20 to 25 per cent in the weight f the propeller. In addition to the Colossus and the Calliope, manganese bronze has been employed for the propellers of the Calypso, Rover, Rattlesnake, and Sandlly. The French government has adopted the same metal for the twin-serews of the Tage, Cecille, Forbin, Surcouf, Troude, Lalande, and Cosman. The Russian government has taken the same course
regard to the Amiral Kornilow and the Rhynda.
We may now say something as to the prob of the advantage given by manganese bronze when this metal is employed in the construction of acrew propel lers. A particular kind of manganese bronze is used or this purpose. There are five different qualities of the metal, that of which the propellers are made poe sessing great strength and toughneas. We have already mentioned the proof of this in the trials made in the presence of the Admiralty inspector. The transverse strength of the metal is stated to be about equal to that of the best cast steel. Hence, as compared with gui metal, a great reduction can be effected in the thick sharper. There is also a peculiar smootheness of an face, producing a diminution of skin friction, especially important where high rates of speed are employed. velocity of forty or fifty miles per hour in the extremities of the blades gives value to everything which reduces the unproductive resistance. The power thus saved is utilized in giving greater speed to the vessel Steel eastings for propeller blades are very rough, and are almost al ways out of true pitch, owing to the warp ing which they undergo in the annealing furnace whereas the manganese bronze blades are almost math ematically true, as shown when tested by the pitcho This
This metal has the advantage over steel of being more fluid when melted, thereby producing a finer cast ing. Freedon from pitting and corrosion preserves the blades for a long time in their original form, so that the life of a bronze blade may be reckoned as equal to the saving ship to which it is attached. So great bronze propeller, that the redaction in the oatlay for raw material renders the price about equal to that of a propeller made of gun metal, although weight for weight the bronze is from 20 to 25 per cent dearer. There is also the recommendation that the manganese bronze propeller will fetch a good price as old metal. As times dearer at the ontset. But the pitting which so woon takes effect on steel greatly enhances the cost in the course of years, so that after the lapse of a certain period that which appeared the dearest proves to be the cheapest. Taken all in all, there is accordingly mach to be said in favor of manganese bronze. In these days, when "commerce destroyers " are in vogue with foreign navies, and vessels to eatch these "de stroyers" are specially needed in the navy of England, it is well that we should not only know how to mak most eflicient and endaring propeller. For this purpose we shall expeet to find manganese bre
in favor as time goes on.-The Engineer.

Something New fa Photo-lith

The usual method of making photo-litbographi Transfers is upon selatine made sensitive with potas ium bichromate. This is quite sensitive enough to day light or to electric light ; but if transfers are re quired when neither day nor electrie light is available then bichromated gelatine is useless, and some other method is wanted. Try this Make a print upon any of the ordinary bromide papers of commerce, using a cood negative from a subject in line, by artificial light ; and develop the image with alkaline pyro, then wash and place it upon the inking board; next, blot the water with a sort cloth, and dab all over with a sponge saturated with transter ink, thinned with turpentine; let the turpentine evaporate, then take a glue roller, i. e., a type printer's roller, and roll until the whites are quite clear of ink. Now soak the print in the pyro again for a few neconds, and expose it to the light. Finally, wash free from pyro and hang the print ap to dry. When it is dry the print is ready for the trans-photo-lithographic transfer
The obly way to fail with this method is to over or under expose the print, or to use a bad negative. The nower papers of perfectly clear lines succeed perfsetly; therefore, it is best to make the paper at bome. It is not a very complicated process, a the eolor of the image under the developer is not all important. A good formula is :

Gelatine

300 grinas.
When the gelatine is quite soft, melt it at 190° F.,
til it is dissolved, then add ten minims of bydroehloric acid and stir well.
In 10 ounces of water dissolve 450 grains of nitrate of ilver, bringing this solation to the same temperature is the gelatine solution ; now proceed to pour the sil er solution into the gelatine in a very thin streain tirring it vigorously all the time. Now strain it into warm dish, and tilt the solution so that it is only along one edge of the dish. Having made a small roll of the paper, lay one edge of the roll upon the liquid and as it curls take hold of it and lift it slowly up, when the paper will unroll it self and receive a nice even cont of emulsion. Hang it ap to dry, and repeat until all the emulsion is used.
For half tone transfers, use the bromide and chloride f calciam with $\mathbf{2 0 0}$ grains extra of gelatine, drying the paper at as high a temperature as possible without melting the gelatine. Paper with this emulsion upon will be very hygroscopic, and must be kept very dry. Before use, always dry the paper, and warm again be ore developing, so as to encourage reticulation of the gelatine.
This paper in to be exposed under a half tone nega, developed and washed, then inked up as directed隹 the ine transfers, followed by immersion in the deer, and subsequent exposare to hight, washiog, ad drying. To transfer to stone, trim with a pair of quite limp. Then sponge the back of the transfer with solution of oxalis aeid 1 Part, water 100 parts Take reat care that none of this solution gets on the front the tranefer. Lay the sheet in position upon a cold ry atone, and pull it through the prese, with plenty

 The paper can be ifted ofr, leaving the image in ink hours before rolling up. - Photo. News.

Itubber stamp Ink.
The usual rubber stamp inks are prepared with vater soluble aniline colors and glycerine. A good ormula, which we have tested practically, is given by Dieterich :

Mix them intimately by trituration in a morta The blue should be well rubbed down with the water and the glycerine gradually added. When solution is effected, the other ingredients are added.]
Other colors are produced by substituting for the lue any one of the following

Methyl violet, a B.
 Methyl green, yellowit Veauvin B (browa)
 Veavin B (brown)...

If a bright red ink is required, 3 parts of eosin BBN re used, but the pyroligneous acid must be omitted, this would destroy the eosin. Other aniline colors, when used for stanping ink, require to be acidulated. -American Druggist.

Improved Indieen

Burr's patent combination index, manufactured by the Burr Index Co., of Hartford, Conn., covers a long felt need in the way of improved indexes. We speak from experience, as we have had the Burr index in use in the Scientific American oftice for over two years past. Our first order was for an index for 10,000 ames. The work proved so useful we soon ordered another of still larger capacity.
This index is extensively used by the United States and Canadian governments, leading railroads, banks, insurance companies, and representative firms in all parts of the country. The system is complete, the plan simple for general use, readily understood, and so arranged that any name can be found at once.
The indices are made with great care, from the best of material, calculated for constant and hard use : made of any size, ranging in capacity from 500 to $1,000,000$ or ore names, and the largest number of names can be handled with the utmost rapidity and convenience.

Wild Boars among Es.

According to the American Field, wild boars have become very numerous in the deep recesses of the Shawangunk Mountains, that border Orange and Sullivan Counties, N. Y. They are the genuine Black Forest wild boars of Europe, the descendants of nine formidable and ferocions boars and sows which Mr. Otto Plock, of New York, imported some few years ago for the purpose of annihilating the snakes and vermin that infested his estate near the Shawangonk Mountains. After the boare had eaten upall the snakes and vermin in the inelosure, they longed for more, and dug under the wire feneing and escaped to the mozutains, where they have since bred and multiplied. They are so feroeious that the most daring hunter is said to hesitate before attacking them. They have immense heads, huge tusks and shoulders, and lank hind parts.

THE NEW LONDON DOUBLE TRAGE RAILROAD hRIDGE AND DRAW SPAN.

(Continued from flrst page.)

by the largest drawbridge in the world, and a saving
for the traveler of no inconsiderable amount of time will have been effected.
The work now in progress involves not only the bridge proper, but some five miles of approaches. Mr. Alfred P. Boller has been appointed engineer in the service of the railroad, for the designing and super intendence of this work. The new line of railroad nakes a detour in New London and reaches the shore at Winthrop's Point, about half a mile above the present ferry landing. The company in building the bridge was limited by conditions imposed by the U. S. authorities as to its position and span, which, together with the favorable disposition of the shores, caused thi point to be selected. On the eastern side, after the hore line is passed, some very precipitous and rocky ground is encountered. The new line is carried through this region for about four miles before joining the main ine. No saving in distance is effected by the change. The legal restrictions and nature of the ground made the change of route a necessity
The Thames River is a tidal estuary about fourteen miles in length. Near its mouth is the town of New London, at its head is the town of Norwich, at which point the Niantic and Shetucket rivers enter It. The bridge is located at a narrow portion, where the inlet diminishes to 1,500 feet in width. On the west shore, the bank descends quite steeply to the river; on the east, the rise is gradual and the water grows shallow more slowly. Fortunately for the building operations, the current is a sluggish one, even in spring freshets, as a rule, not being very serious. The depth of water in the channel, which may be said to Include over twothirds of the width, varies from forty to sixty feet, The bottom is soft at the surface, but runs into a stiffer clay with sand and gravel as a greater depth is reached, and about 130 feet below the water level a hard bottom is reached. This bottom, by means of piling, is used to support and carry the bridge plers.

It in evident that the depth was too great to admit of pneumatic working, and the expense of dredging down and sinking a complete caisson to the solid ground seemed to prohibit this mode of construction. A novel method was therefore adopted. An open caisson or double-walled crib was built and sunk into a hole formed by dredging to the depth of 18 feet helow the natural bottom. The center area of this crib was divided into poekets, and the whole was driven full of piling that ran down to hard bottom. The piles were then sawed off ; for the center pier, 60 feet below the surface of the water; for the other piers, 42 and 50 feet respectively. An open top caisson was now built with a solid bottom, and with temporary sides carried up above its floor. It was fastened with composition spikes. The bottom was of 12 by 12 inch hemlock, and the sides and deek were cased in double courses of planking impregnated with 14 lb . of coal tar ereosote tion over the piling and erib work. The masonry for the piers was laid upon the bottom of this floating the piers was laid upon the bottom of this foating it reached the piling. The masonry was then carried it reached the piling. The masonry was then carried
up until above the surface, when the temporary sides up until above the surface, when the temporary sides
were removed, and the masonry pier stood alone in the center of the stream.
The cribs, it will be remembered, were sunk into dredged holes. The center was pretty well fllled with piling, but as it atood unbraced within the crib, sand was dumped upon it before the caisson was lowered This filled every interstice, and the piling is now held as firm and immovable at the top as at the bottom. The three river piers were all established in genera by this method. As the center pier has to sustain alone and unaided the great draw span, it was thought best to submit it to an cnusual consolidating procese and incidental test. It was accordingly loaded with 2,700 tons of pig iron. This compressed all the timber portion strongly together and forced the caisson floor down upon the piling. Thus any piles that projected a few inches above the rest were forced into the wooden caisson bottom, so as to give all an equal thus deposited upon the pier, the operation of loading the pier is illustrated in pies of the ents.
The superstructure is built entirely of steel. For most of the membera open hearth steel is used. For ore compression members Bessemer steel is admitted. The end spans are covered by deek trusses on the tri angular system, twenty-four feet deep. These are of 150 feet span each. Next come the two long spans, one on each side of the draw, and of 310 feet span each. These are through trusses, the floor or deck lying in the plane of the lower chord. In the center they are 45 feet deep, at each ond 25 feet. The draw span is 508 feet long. At the center it is 75 feet deep, and runs down at each end to 25 feet. The carve described by each division of the truss is a parabola, so that the contour of the cable of a suspension bridge, when the bridge is equally loaded over its entire length, is to e
given from center to center of piers,
The central draw span affords two clear openings of 295 feet width each. The great width was exacted by the Federal government, who possess a naval station above the bridge, and who desired as little obstruction as possible to be placed in the channel leading thereto. Another feature was designed to accelerate the rapidity of operation of the draw. The design provided for swinging the bridge through the entire circle. Thus, when opened for the passage of a vessel, it could be she passed through and closing without reversal.
The machinery for moving the draw is placed upo the central pier, below the bridge span. It comprises an engine with two oscillating cylinders, 7 by 10 inches, an engine with two oscillating cylinders, 7 by 10 inches,
running at 200 revolutions per minute. This motor ronning at 200 revolutions per minute. This motor and out of engagement by friction clatches. The turn table proper is of steel, with a heavy rim, which bear upon fifty-eight cast steel wheels. These are coned and
bear upon accurately matched steel tracks, The drum bear upon accurately matched steel tracks. The dram
is 5 feet deep, and is supported apon eight equidistant is 5 feet deep, and is supported upon eight equidistant points upon the table.
Under the pivot pier there are 640 piles, distributed are carried upan 368 piles, square feet. The rest piers 4,000 square feet. The draw span and table alone weigh 1,200 tons, an 1 , in connection with the stoneand caisson floor, brin
each pile.
The superstructure is proportioned and calculated to bear a live load of 3,000 pounds to the lineal foot of track, with the superadded weight of two consolidated locomot
The chief engineer, Mr. Alfred P. Boller, of this city was seconded in earrying out the work by Colonel J. Albert Monroe, resident engineer. Mr. Alexander McGaw, of Philadelphia, was contractor for the masoury, and Mr. Warren Roosevelt for the piling and structure were supplied by the Union Bridge Co., of structure were supplied
New York and Buffalo.

AK IMPROVED FOLDING STEP-LADDER.

The accompanying illustration represents a folding step-ladder which may be used as an ordinary ladder, or automatically olding step-lad der, one of the mall views showing a vertical seoportion of the ladder in folded position for use as a folding stepladder, and the other represent ing one of the step hinges. This in vention has been patented by Mr. John A. Neill, of East Portland, Oregon. The ladder is formed with wo pairs of
double uprights

NEILL/S STEP-LADDER.

and folding supports or legs, the latter being secured to the top by plates bolted thereto and secured to the ander side of the top. The upper ends of the double uprights project and move between the plates, and are connected thereto by screws or pins riding in carved lots in the plates. The upper ends of the double upights are formed with inclined surfaces which fit gainst the under side of the top when the ladder is anfolded, and are connected together on each side by the bent cross portion of the hinge, the main portion of which extends between the uprights and beneath the steps, serving as a brace therefor. The legs and
double uprights are held in unfolded position by means of folding brace arms.

The Electrical Census Machine.

This system of machines may be described as follows: The census collector will call with his printed blank, and answers to questions will be written in the usua way. These sheets will then be placed bellikened to who writer, except, instead of the usual ink mark on paper, small round holes are punched in a card. The cards, one for each person, are about $61 / 2$ inches in ength by 3 inches in width, and the particular position of a hole in a eard indicates an answer to some of the
questions in the printed blank. As many as 250 items I information can be punched out upon a card, al hough no one card would ever have more than one tenth part of the whele number, as, for ewample, ne
one porson can be classed as both white and black, American and foreign born, and if foreign born he can niy come from one country.
These cards when punched are placed one at a time a a sort of press, and a lever operated by one hand is brought down, when a series of pins are brought against the card. Whenever a hole has been punched in a card the corresponding pin passes through into a mercury ap beneath, completing an electric circuit. Thees eircuits, one for every hole, pass out to a large number counters which operate electrically, and which add pon their dials all items of the same kind upon the same dials ; as, for instance, all white men upon a dial marked white males ; all business or professional peole upon dials which indicate their particular business or profession. The cards, as they leave the „press, are all sorted by means of an electrical sorting device, whereby they may be separated into groups or Itates f the Union
It will thus be seen that the machines are much more reliable than the most accurate human agency, and that one machine will do the work of a large number of clerks. The next census of this country will be aken with these machines, and two will be sent to New York soon for the 1800 census taking.

Treatment of Forelgn Hodien in the stomach.
A method of treatment for foreign bodies in the stomach, which appears to be generally known and practiced with almost uniform success in both England and the Continent, consists in the administration simply of large amounts of potatoes, to which the diet should be restricted. It is stated by Professor Cameron, of Glasgow, that this plan, which, so far as we know, is almost unknown in this country, originated with the London pickpockets, whose custom it is to immediately swallow small articles of jewelry acquired in the pur suit of their profession, and then depend on their re covery through the evacuation which follows the abundant une of the potato diet. Several cases are on record where this method has proved eminently suc cessful. Thus, Ir. Salzer (Deutsche Mredizinal Zeitung for January 94, 1880) reports the case of a child who had swallowed a brass weight of three hundred grain in September, 1887, and in whom the physician was on the point of performing gastrotomy. According to Dr Salzer's advice the child was pat in bed, kept on hi right side, so as to facilitate the passage through the pylorus, and then fed with as much potato, prepared in different methods to stimulate the appetite, as he could be persuaded to take. In flve days the foreign body was evacuated in the freces. He also refers to a case of a patient who had swallowed a set of artiflcial teeth, and another who had swallowed a breast pin one and a half inches in diameter, in both of which cases the foreign bodies were removed without difficulty. At the meeting of the Society of Physicians in VI enna, at which the above cases were reported, the discussion which they stimulated led to the report of several other cases, one especially, by Hochenegg, which is especially remarkable in that it dealt with the case of a young carpenter, who, in 1884, swallowed a long nail, which was removed by gastrotomy. Two years later the patient was so unfortunate as to swal low a second nail similar in all respects to the first. The potato cure was employed, and the nail was secured after nine days. In the Deutsche Medizinal Zeitung for March 11, 1889, Dr. Deichmuller refers to a case of a young girl, ten years of age, who had accidentally swallowed a pin. Pain was complained of under the breastbone, and Dr. Deichmnller, acting on the suggestion acquired through the report of the above cases, restricted the patient to the potato diet. Very shortly afterward the pain disappeared from the chest and was relt in the stomach. Six days later it appeared in the right inguinal region; two days subsequently, having increased in severity, it was felt in the left inguinal region, while in the evening of this day the foreign body was evacuated with the feces.
It is hardly necessary for us to call attention to the prineiples upon which this method is based. Potatoes, as is well known, are composed of nearly twenty per sent. of carbohydrates, eighty per cent. of the solide being starch and cellulose. On account of this large he ant of carbohydrate, a great portion will ressad the action of the digestive juices. The cellulose and other carbohydrates increasing greatly in volume from mbibition with water, lead to an accumulation of an me intestinal amount of indigestible residae; consequently the administration of this food, filled with large masses of non-absorbable matter. The folds of the intentine become obliterated, and fixation of the foreign body in the intestinal tube is thus avoided. It seems that from five to nine days, or even longer, are required for the vacuation of the foreign body, and in every case which does not seem desperate, a trial of thim simple plan of treatment should precede resort to gastrotomy. In fact, at the recent meeting of the Vienna Medical College, Prof. Billroth said that since the introlnction of this procedure, gastrotomy for foreign bodies should seeese an ebsolete operation.-2herapeutic Gazette.

AN TMPROVED ATR BEIP.

An air ship deaigned to be completely under the control of the operator, and to be easily steered and pro pelled in any direetion, with, on, or against the wind is shown in the accompanying illastration, and forms the subject, of a patent issued to Mr. Herman A. J. Rieckert, of No. 194 Rivington Street, New York City. The most prominent feature of the construction is balioon made in three compartments, the lower one stiffened by a framework and supporting the see ond compartment, on which is secured the third com partment, exposed to the action of the wind, and with its edges attached to the framework. A closed basket, the interior of which is partly shown, is supported on the under side of the balloon, and contains a motive power, proferably in bicycle form, for operating sidewise flapping wings and central wings. A suction wheel is mounted to rotate above the basket at its rear from the motive power located in the basket, communicated through a frietion wheel, which can be readily thrown into and out of contact with the suction wheel, while a propeller wheel is secured on the shaft of the friction wheel, to be operated thereby. The steering device, located in front of the basket, consists of a vertical wing mounted to swing, and a disk wing pivoted on Wing mounted to swing, and a disk wing pivoted on operating the wings. Connected with the balloon is a
in shape, while the outer wings are placed in an inin shape, while the outer wings are placed in an inclined position, and have an outer frame and a central partition, between which and the sides of the frame are slats, on which are secured strips of canvas. These strips are bag shaped, the outer ends of each extending nder the next following slat, so that when the wings nove upward the bag parts of the canvas strips are opened downward, and when the wings move downward the bag parts are pressed up against the slats, whereby the wings will operate with their full power on the air. The central wings also have similar slats and canras, and the arrangement is such that when the outer wings move upward the inner ones move downward, and vice versa. The balloon is also provided with the asual device for letting out gas in case a rapid descent is desirable, and it is designed that boats shall be sesured to the bottom of the basket to sustain the entire device above water should it descend on a lake or ocean.

Chance for Inventive Gentus.
The State Grange of Illinois, through its executive committee, headquarters at Joliet, offers $\$ 10,000$ to er paid to any one who will invent a machine or dewith straw.
Said device may work and twist its straw direet
of infant life. Hearing, therefore, is the only special sense which is not active at this time. The child hears by the third or fourth day. Taste and smell are senses at first most active, but they are not differentiated. General organic sensations of well-being or discomfort are felt from the first ; but pain and pleasure, as mental states, are not noted till at or near the second nonth.
The first sign of speech in the shape of utteranee of sonsonant sounds is heard in the latter part of the seeond month ; these consonants being generally " m ," " $\mathrm{r}_{\text {, " " } \mathrm{g}_{0} \text { " or " } \mathrm{t} \text {." All the movements of the eyes be- }}^{\text {come co-ordinate by the fourth month and by thi }}$ come co-ordinate by the fourth month ; and by this time the child begins to have the "feeling of self," . e., he looks at his own hands, and looks at himself in the mirror. The study of the child's mind daring the first year shows conclusively that ideas develop and reasoning processes occur before there is any knowledge of words or of language ; though it may be assumed that the child thinks in symbols, visual or audiory, which are clumsy equivalents for words, By the end of the year the child begins to express itself by sounds, i. e., speech begins. The development of this speech capacity is, according to Preyer, in accordance with the development of the intellectual powers. By the end of the second year the child's power of speech is practically acquired.

AN AIR SHIP WITH BALLOON DESIGNED TO BE READILY PROPELLED IN ANY DIRECTION.

fllling receptacle, communicating with its three compartments, this receptacle having an inlet pipe adapted o be conneeted with the gas supply, while three outlet pipes lead to the compartments, and apertared slides held in the receptacle control the inlet of gas and the outlet of air. In the basket are wheels mounted to be rotated by crank arms and treadles, an eccentric being secured on the shaft of the central fly wheel, a rod extending upward from which is connected with a lever, by which the suction wheel is operated, while the flapping side and central wings are operated from the rod. Consined with the main flywheel is a starting device, consisting of a friction wheel adapted to engage the periphery of the flywheel, while the shaft on which the rietion wheel is secured carries a propeller wheel, its shaft having a pivotal bearing, with the free end of which a lever is pivotally conneeted, to throw the bearing ap or down to alternately engage or disengage the friction wheel.
The different compartmente of the balloon are covered with the usual material, preferably silk, and the top compartment is made to shift and assume different poeitions according to the direetion and strength of the wind, our illustration showing its position at a normal preasure of the wind or at a normal velocity of the top sompartment to shift to the right or left, while the central compent to shit to the rigat or iefi, while very little. On the ander aide of the lowest compartment is a transverse offeet directly above the propeller wheel, the offset cansing the air thrown ont by the propeller wheal to ezer a pressure against the front propeller wheel to exert a pressure against the front will rise more easily. The inner wigga are reetangular

Irom the reaper, or it may be a separate machine that will twist the etraw and wind on large spools that may be rereeled on smaller spools by the farmer money to be paid as soon as the device is proved to be a success. Should more than one person claim the above $\$ 10,000$ on his invention, the committee reserve the right to choose the one that to them seems most practical. The said patent to be issued for the use and benefit of the Illinois state Grange and legally transferred by the said patentee. This offer holds good until July 8,1880 , and is signed by the following officers of the Grange:

Master Illinois State Grange, Joliet, III. J. R. Shaver, Ottawa, Grorge R. TATE, smithton, J. H. Vanarsdale, Peoria, Executive Committee

Growth of the Child's Mind.

In the last volume of the "Education Series," on The Development of the Intellect," Mr. H. W. Brown bas presented a conspectus of the observations of Pro essor Preyer on the mind of the child. This conspec the senses, intellect, and will of the growing child, of presents in a condensed form the result of a great number of careful observations. Many of these re sults are already well known, but the presentation of them in a systematic and complete way has not heretoore been done.
It is recorded that sensibility to light, toueh, temperature, smell, and taste are present on the first day

Professor Preyer's most striking and important conlusion, in his own opinion, is that the normal infant an form concepts and perform logical operations withut the ald of words, or gestures, or symbols of any kind. He also shows what was known before, that the infant understands spoken language before he can prouce the sounds he hears ; and finally that the child, before he begins to speak, forms all the sounds that ocear in his future speech. Professor Preyer thinks hat by his observations he "has bridged over the only great gulf between the child and the brute animal."
The learned professor does not believe in stimulating the infant imagination by fairy stories or religions myths ; but he believes in "Atsop's Fables," and has his son repeat one to him every morning. Such are some of the advantages of being the son of a physi-ologist.-Medical Record.

Tubereniar Meningitis.

An interesting note is taken from a paper by Dr. Skeer, of Chicago, on the diagnosis of tubercular meningitis. The symptom is "a small circle which forms in the iris near to and completely surrounding the pupillary margin. At first it is very indistinet, and resembles a wreath of white clonds, the edge of which extends at first to the free border of the iris. In from twelve to thirty-six hours the whole margin of the iris will be involved, having beeome of a yellowish or whitish brown color, and appearing irregular, thickened, and somewhat granulated." Dr. Skeer considers that when in a case of cerebral meningitis the wreaths of white clouds appear in the iris, the question of diagnosis is settled beyond a doubt.

A BIREN FOR MEASURINE VELOCITIES.
 BY azo. m. норкіsя.

In this instrument advantage is taken of the well known fact that for every tone a resonator may be pro vided that will respond to and re-enforce the vibrations producing that tone. The length of a closed resonant tube is one-fourth that of the sound wave to which it responds. The length of an open resonant tube is one-half

Fig. 1.-DETERMINING SPEED BY RESONANCE.
that of the sound wave to which it responds. It is obvious that a telescopic tube may be adjusted to re spond to different pitches. Knowing the number of vibrations required per second to produce a certain pitch, it is comparatively an easy matter to determine the rate of any series of regular air vibrations by adjusting the tube to such a length as to cause it to re spond to the vibrations.
In Fig. 1 is shown a resonant tube supported over a small fan wheel. The fan has ten blades, so that during one revolution it sends ten puffs of air up the tube. By gradually increasing the velocity of the fan a speed wil be reached at which the tube yields a low but distinet musical tone. If, for example, this tone corresponds to middle c, it is known that 201 puffs of air are made in the tube, and that since there are ten blades to the fans, the number of revolutions of the fan shaft mnst be $208=26 \cdot 1$ per second, or 1,546 revolutions per minute
In Fir is illustrated a siren constructed on this
In Fig. 2 is illastrated a siren constructed on this principle. The parts of this instrument are shown in detail in Fig. o. He cor ais at the center and disag a rotary fan which draws in air at the center and dis charges it through an openigg in the top of the casing. The blades of the fan are arranged radially upon opposite sides of the disk, and the fan is encircled by a perforated rim, which fits the circular ceasing and acts as a valve in controlling the escape of air. The periorations of the rim correspond in number and position with the fan blades.
The discharge opening of the casing is provided with A socket for receiving a resona ceiving a resonator. The resonaconsists of a pai of tubes made to slide telescopical ly one within the other, the inner one being graduated to indicate ted to indicate ength require or pitches, and pitches, and conferent speeds fir ferent speeds. A the fan revolve the air drawn in through the holes at the center of the casing is thrown outward by centrifugal force, thus maintaining a pressure of alr at the periphery of the fan. The holes In the rim of the fan allow the air to escape in regular puffs, the frequeney of which depends upon the velocity of the fan. These puffs produce sounds varying in pitch and intensity with the speed of the fan, and the reso-

Fig. 3.-DETAILS OF THE SIREN.
nating tube re-enforces the particular note to which it is tuned, so that when a speed is reached corresponding With the adjustment of the tube, the fact is known by the superior strength of that particular note. Any he intensity The siren is shown in Fig in of on mechanism for driving it by hand. It is provided with a revolution counter and with a trumpet-shaped resonator. It is designed to be used in the same manner as the siren of Cagniard Latour, and, like that instrument, yields sounds under water.

Utility of Hobbies.

Said a gentleman who had seen much of human life and was himself an enthusiastic student at threescore years: "No man in this world can be happy without a hobby."
With this as a text, another seholarly and amiable hobby rider said, as an introduction to a lecture upon his favorite study: "Indeed, for diverting our minds from the little crosses which we all have to bear, there is no earthly solace so healing as a subject in which we are intensely interested - something to which the thoughts may at any moment recur when weary of the suggestions we would escape.
"When, in addition to being an innocent diversion, ours is a useful study, we and our fellow-mortals are alike gainers. The person who passes through life without being an enthusiastic stadent of something loses more than he can appreciate.
"I emphasize the something, because nothing but natural selection can decide what ought to be each person's field of work. Nature is generous; the field is the world. With one it may be rocks or ferns, with another mosses or oaks; or leaving untamed nature for applied science, it may be the steam engine or the telescope, the field of language or the human form. No person has a right to say : 'My study is important, and yours is useless.' Each man's hobby is really for him the most valuable addition he can make to his him the most valuable addition he can make to his
own happiness, and the most precious contribution on his part to the sum total of human felieity and general knowledge."-Universal Tinker.

What are the Thoughts of the Dying
In the Sociétê de Biologie, Ferê affirmed that a dying person in his last moments thinks of the chief events of his life. Persons resuseitated from drowning, epilepties with grave attacks, persons dying and already unconscions, but momentatily brought back to consciousness by ether injections to utter their last thoughts, all acknowledge that their last thoughts revert to momentous events of their life. Such an ether injection revives once more the normal disposition of cerebral activity, already nearly extinguished, and it might, be possible at this moment to learn of certain important events of the past life. Brown-Sequard mentions the remarkable fact that persons who, in consequence of grave cerebral affections, have been paralyzed for years, get back at once when dying their sensibility, mobility, and intelligence. All such facts clearly show that at the moment of dissolution important changes take place, reacting upon the composition of the blood and the functions of the organs.-Wien Med. Zeitung.

Japanese Gold Thread.

The above article, used in flner embroidery on ac count of its elegant luster, consists of a core of silk or of wool and a spiral envelope of thin gilded paper.

The strip of paper is only two-fiftieths to three-fiftieths of an inch wide, and therefore must be wound with the greatest care. The thread thus wound is eaturated
with shellac and then gilded. Compared to European

Fig. 4.-CENTRIFUGAL SIREN. is sprinkled on the surface several times a day for nome

The Harriage of the Emperor of Ohina.
The marriage of the Emperor of Cbina took place at Pekin on February 25. The eeremonies enjoined by precedent appear to have been strictly followed. On the 25 th the marriage procession started from the palace at two o'clock in the afternoon, and wound ite way mouths of the streets and lanes in the line of the pro ceesion were barricaded with donble rows of high proting, the streets had recently been repaired, and matcovered with yellow earth, and the houses along the route were festooned
with red silk. Off-
cials and Mancho
bannermen, in their
robes of office, lined both sides of the treets. The presents to the bride had previously been sent to her house. The proression was headed by four horsemen as heraids, followed at a short distance by a arge cavalcade of horsemen led by the two imperial commissioners appointed to escort the bride : then followed uine pairs of white ponies with yellow trappings, two deep, led pings, two deep, led by men, next two large yellow satin eight bearers, These eight bearers. These were followed by a huge crowd of bannermen in large red flowered robes, carrying lanterns with the character " felicity " painted on them; then came halberdiers with large, round yellow silk fans or sereens and
two closed silk umbrellas. Last of all came the phenix two closed silk umbrellas. Last of all came the phenix
chair in yellow satin for the bride, carried by sixteen chair in yellow satin for the bride, carried by sixteen celock the following morning the procession returned o the pal lowing morning the procession returned concubines, carrying the bride and the two young years of age, the concubines, who are two sisters, twelve and fourteen, respectively. The streets were lighted with fixed lamps, and the numerous bearers carried lanterns. Thero was no music. This is only the third time during the present dynasty that the marriage of the Emperor has taken place while he was ot the throne. A week Jater on March 4, the Empress Dowager ofllicially handed over the reins of power to the Emperor.

Hemoval of Tattoo Marlss.
The following method is recommended by M. Variot in the Revue Scientiflque: The skin is first covered with a concentrated solution of tannin, and retattooed with this in the parts to be cleared. Then an ordinary aitrate of silver crayon is rubbed over these parts, which become black by formation of tannate of silver in the superficial layer of the dermis. Tannin powder
days to dry it. A dark erust forms, which loses color in three or four days, and, in a fortnight or so, comes away, leaving a reddish scar, free of tattoo marks, and, in a few months, little noticeable. It is well to do the work in patches about the size of a flve franc piece at a time. The person can then go on with his usual oceupation.

SEVENTERA year old locusts are due in New Jersey this sum Jersey this sum gold thread, these threads possess the advantage of \mid mer, and Professor John B. Smith, the entomologist greater flexibility and finer luster. In this they equal of the State Scientifle School at Rutgers College, New

$\begin{array}{l}\text { cently discovered by mieroscopic investigation, }-D .\end{array} \left\lvert\, \begin{array}{l}\text { actions while here, their numb } \\ \text { Wollen-Gew. no such record now, it is said. }\end{array}\right.$
$\begin{array}{l}\text { ind }\end{array}$

advantages attending the use of extremely high powe machines compared with that of an equivalent group of small power machines; reserve machines ; advantages and inconveniences of electrical and mechanical connections between groups of machines.
Third Section; Electro-Chemistry,-Batteries and accumulators. Different types employed in commerce electromotive force, discharge, capacity, duration cost price of electrical energy. Electrolysis ; electromotive force necessary for commerical purposes ; elec temperatures employed : their influence on the quality of depositions ; separation and refining of metals Electro metallurgy; electrieal furnaces ; electrical welding. Fourth
Fourth section ; Lighting.-The lighting of dwell ings, workshops, and public thoroughfares ; amoun distribution and intensity of the sources employed; distribution and intensity of the sources employed; comparison between the voltaic are and incandescent
lamps; high power incandescent lamps. Regulators ; means employed for reducing resistances and lamps. Incandescent lamps; new methods of manufacture their efficiency and duration. Methods of working central stations.
Fifth Section; I. Telegraphy.-Use of machines for the production of currents; installation, employment and duration of underground lines ; overhead lines ; apparatus for rapid transmission ; multiple telegraphy; lightning conductors II. Telephony. - Improve ments in telephones and microphones ; batteries. Establishment of lines; effects of induction; long dis tance telephony. Organization of central stations commutators. Subscription and public stations; the atatistics and legislation. III. Miscellaneous Applica-tions.-Electrical clocks; chronographs; recording apparatus; signals; applications to military and naval service and to public works ; earth currents.
Sixth Seetion; Electro-Physiology.-Comparison of effects obtained in the use of various medical apparatus ; the necessity of defining the nature of currenta employed. The nature of electrical phenomena observed in living beings. The effect of continuous and alternating current discharges upon animals. Electrolywis of tissues; precautions to be taken in electrical installations.

Prospects for steel Kalle

The latest rumor in steel rail circles is that steel rails will be down to $\}=5$ before midsummer. The atrongest basis for that rumor is that two western Pennsylvania mils are competing for trade, and that one is deterThe latest steel rail inprovenents have been at $\ddagger 26$. by steel rall manufesterara te redaee eot of predneted
to the lowest point ever known, and as there is not enough business to go around, those who can discount quotations from one to two dollars per ton below others will secure the first rush business. Nothing has as yet been settled with reference to the talk of shatting down fer the wan rer. Heavy iron one of shatting being placed every day. Pig iron production he being placed every day. Pig iron production has not been curtailed in any section of the country. Rail road companies have quietly undertaken to modify freight rates to purchasers from furnaces, Bar mill throughout the country are working but little over 60 per cent of their capacity, plate mills 70 per cent. Pipe mills are booking a good many orders. The coal trade
is extremely dull, but there are signs of improvement, is extremely dull, but there are signs of improvement the heavy output. There is a strong confidence that in two or three weeks more a general improvement will set in. Foreign iron and steel makers are quite active. Marine engine building and ship building are brisk, and companies doing such business are quite full of work, and a better condition exists than has been known for several years, Railroad building is not being pushed with the accustomed energy, but railroad promoters assert that, as soon as conditions warrant it sections of the country, but in the older, in which there is at present a superabundance of railway facili-ties.-Railway Review.

Weak Heartw

A weak heart seems to be decidedly more practically nconvenient than a weak head. If a man or a woman be a little feeble about the region of the brain, it will be provided if the conduct be respectable; and lack of brains is too common to excite any particular attention either in the person concerned or in those about him. But a weak heart insists upon putting itself in evidence at all sorts of convenient and inconvenient times. If its possessor finds himself rather late for his morning train, and makes a "spurt " to re-
cover lost time, the exertion is usually followed by cover lost time, the exertion is usually followed by
such a "bad quarter of an hour" that he resolves in such a "bad quarter of an hour" that he resolves in porary suffocation or permanent syncope again. The practical evils which are associated with a feeble heart are innumerable, and will readily suggest themselves to those who possess so unsatisfactory a pumping engine. Weak hearts are by no means so common as is often supposed. Many a man who thinks he has got one is merely dyspeptic; many a woman owes her symptoms to tight lacing or insuffleient feeding. If the dyspepsia be cured, or the tight lacing be dispensed with, the symptoms of heart weakness will disappear Even when the heart is geuuinely "weak," the weak ness is not always due to special disease of that organ. It may be only part of a general weakness of the whole system, which is easily curable. The late Sir Robert Christison, one of the most eminent of British physicians, used to smile at certain persons who were always complaining of weak hearts. "Gentlemen," be would say to his students when leeturing on digitalis, "genlemen, the best tonic for a weak heart is a good brisk walk." Not a doubt of it. The majority of weak, fabby hearts are weak and flabby because every other musele in the body is weak and flabby, and this general weakness and flabbiness is due to want of vigorous use. Exercise of the legs and back and arms gives additional and much needed exercise to the heart, and the heart grows strong by vigorous exercise exactly as every other muscular organ does, for the heart is a
muscle. If a man has no organic disease of the heart, no enlargement, and no functional disorder, plenty of brisk walking, and no functional disorder, plenty of pel his breathlessness and heart weakness, other things being equal. The muscular inactivity of the inodern town man is the parent of more ill health than any other single cause whatever.-Hospital.

separaniog mineral

Mr. Carus-Wilson has devised an effective dry method for separating the denser minerals from sand. A piece of cardboard about 2 ft . long is bent in the form of a shoot or trough (it must not be allowed to break), and held in this form by elastic bands at either end this must then be held, or flxed, at an angle sufficiently inclined to allow the sand to travel slowly down the shoot on being gently tapped. A suall quantity of the sand to he treated is now placed at the hend of the trough, which is then tapped with the finger. When the trough is tapped, the sand travels slowly down. and in doing so the denser grains lag behind, forming a dark mass in the rear of the stream : this dark mass increases as the sand fows on, and must be collected and placed in a receptacle just the moment before the last tap would cause it to fall off the trough. When a sufficient quantity of this denser sand has been thu collected, it should be placed in the lid of a cardboard box (about 18 in . by 6 in .), and gently shaken to and fro at a slightly inclined angle, the mass being at the same time gently blown upon with the breath. The iner quartz grains will thus be blown away, and hard ly any but the denser grains will remain.

Lowering the Freezing Point
At a recent meeting of the Chemical Society, London, a paper was read on the application of Raoult's depression of melting point method to alloys, by Messrs. C. T. Heyoock and E. H. Neville.

As a result of some preliminary experiments on the change in the solidifying point of tin caused by the addition of small quantitie of other metals, the authors conclude that the dissolution of a metal in tin follows the same laws as that of compounds in other solvents, i. e.: 1. That the fall in temperature of the solidifying point is directly proportional to the weight of metal added; and 2, that the fall of temperature is inversely as the atomic (molecular 9) weight of the metal added. With tin, copper, silver, cadmium, lead, and mercury, the dissolution of one atomic proportion in 100 atomic proportions of tin caused a fall in temperature of the solidifying point varying from $2 \cdot 16^{\circ}$ to $2 \cdot 67^{\circ}$, with aluminum a fall of $1 \cdot 34^{\circ}$, and with antimony a rise of 20°.
In the discussion which followed the reading of these papers, Professor Armstrong said that notwithstauding the apparent regularity and simplicity of the results, he was not prepared to accept them as in the least degree final. There was not sufficient evidence in his opinion that the effect observed was not in part at least the outcome of a change in the molecular composition of the solvent. The results obtained by Raoult's methods were, he thought, comparable with those obtained by determining the specific heats of the elements. In the latter case the observations were
undoubtedly made with masses of molecules, which undoubtedly made with masses of molecules, which
probably were of varying degrees of atomic complexity, and yet the results were found to be such as to justify conclusions being drawn as to the relative magnitudes of their fundamental constituents-the atoms. In the same way it was possible that the results obtained by Raoult's method by means of observations on the behavior of molecular complexes mightafford the means of deducing the relative magnitudes of the fundamental molecules comprising the somplexes, but not of Mr. Crual complexes operated with.
Mr. Crompton drew attention to Beckmann's recent These show that the true molecular weight point, obtained when solutions were used the concentration of which was allowed to vary only within certain narrow limits, and that if the solutions were too dilute the molecular weight obtained from the lowering of the reezing point was too low, while if the solutions wer vao concentrated, it was too high. In some cases the
varion of the number obtained with the concentravariation of the number obtained with the concentra-
tion was. Professor Carey Foster remarked that much de pended on the definition given of a molecule, whether it is deflned as that smallest quantity capable of ex istence per se, or as that quantity which produces a given effect in depressing vapor pressure, or freezing point, etc. The two mganitudes were not necessarily the same. The relation observed could hardly be accidental, yet he thought that the value obtained migh be a quantity connected with the molecular weight, but not necessarily identical with it. Professor Ramsay, in replying, said tbat substances in dilute solutions must be regarded as in the gaseous state, their molecules being so far distant from each other as not to exert appreciable attraction on each other, and as occupying but a small portion of the space they inhabit It has long been argued that the molecular complexity of the gases, hydrogen, oxygen, and nitrogen, must be the same, inasmuch as these elements have equal coefficients of expansion within the widest limits of temperature.
A similar argument applies to substances in dilute solutions. It is much more probable that they have a simple and similar molecular structure than that the molecules, if complex, dissociate to an equal extent on equal rise of temperature, or on equal alteration o concentration. As regards the empirical nature of Raoult's laws, it is paralleled by the empirical nature of Boyle's and Gay-Lussac's laws-that is, such laws are merely approximations to truth, and depend on the fact that the molecules are sensibly beyond the sphere of each other's attraction, and themselves occupy no appreciable space. Hence their inapplicability at high concentrations.

Lew Level Health Resorts.

Attention has lately been called by Dr. Lindsey to the therapeutic value of regions below the sea level, for asthmatical or consumptive patients, who there have continuously higher atmospheric pressure than at the sea level. Excellent effects have been thus obtained in the valley of Conchilla, near Los Angeles, in California, about 273 feet under the sea (barometric presure only about 7 mm . higher). The most noteworthy place of the kind on the earth's surface is probably the Dead Sea district (-1289 feet), and the following are some others: Lake Asal in East Africa (-639 feet), the ansis of Araj in the desert of Lybia (-270 feet), the Arroyo del Muerto in California (-230 feet), the oasis of
Siwah in Lybia (-123 feet), the borders of the Caspian Siwah in Lybia (-123 feet), the borders of the Caspian
$(-80$ feet $)$
recertiy paterted taventions. Ratlway Applianees.
Car Couplivg. - Robert L. Breth New Washington, Pa, This invention provides
coopling gate and a detachabie frame adipted to placod over a drawiend, in which a rubber boffer atted, thore being a coupling hook and a lifting lever
for the gate, the devioe beling applicable to ordinarily conetructed drawheadk, and obristing the aecessity of train hando going between the cars.
Car Coupliso.-Alexander H. Grant, Hobarh. N. Y. This is a conetructlon by means of
which the coopiling pin may be beld up in poaition for which the coopling pin may be beld up in position for
coupling, may be satomatically coupled by the aetlon
of he link, will be proveated from jumpiag ont of ite of che link, will be proveated from jumpiag out of its eeat, and will not beeome bent, and

Electrieal.

Thlikeraph Sousder,-Frank L. Van Ippe. Iludeon, Mich. Combinod wift the armature cosese on theit lower asd upper surfteces, is a roller bearing piece in the recemes, whepeby the bearing of of the armatare lever will be antomaticalify taten ap.

Meehanical.
WORE REst FOR BENCHEs, - Alex-
ander Wataon, Brooklioe, Mnes. This is an adjastable soder Wateon, Brookline, Mass. This la an adjastable
mes erpectally desigoed for ase with wood-workligg
mechine machinect beligg a simple deviee for effectivily sapp-
porting the back end of work at the face of the benck. while not protrudiag to tear or injure the work-
man's clothen, and one which can be readily adjusted and locked at any req.
Fgeder for Baxd Saws.-Abram B. Spriogsteed, Kalamasoo, Mich. This iavention re Pording a convenient deviee for attachment to the
wort table, whereby analar or wheel segmests of any

Gix Saw Clikangr.-George P. Mel havieg a series of divks, and formed with peripheries of rednoed thicknee provided with laterally projecting
rivs of brahes, being an attechent permittigg the riags of brashes, benge an attachment permilting the
gin to operate apon wot or damp cotton withoot elog-
siog the saws and pibe and withoat lijuring or napping aing the
Sprive Moton. - Annie W. Pearce Greewwoed s. C. Thie motor conslatto of a casing in wear shatio projectisg as easch side of the casing and having a diak with arme adapted to dorschahly connect
the nootor wild the drive whel of the mechine to be
driten, the device being adapted for une with sowing Ariven, the device being adaptod for une whit
machines, dentiete and jewelers drills, ete.

Msecellaneers.

Ovin Thermometrr, -John C. Vobs, fripas, Teras. Comblned with a spladie having lever and an ladex or pointer its compousd bar
 Beot for lodicatiog the temperature of an ove
MECHANICAL Telephones, - Williain W. Nietols, Kew York City. Diverging or ratial Ant
metal plates are coobined with the diaphiram, and
 diaphracw of strais, the line wire connection belag
mede by os buttom restiag centrally on the platea, a mele by obattoe roviag centrally on the platea, a, emall atted of shank of
Waterproorise Straw Goods flanyon Pyatk, Jo., Kew York Clty. This inventio reain diseolved to water and ane oode, drying them, and neatralizitog the effoct of the alkaline eolintion by an impariag s sabatantial body to the goode.
Fishive NET Frames. - John Landman, Brooklyn, N. Y. This Invention relates to binge-ecrow coupling sdapted more particelarly for secaring a coliaposible scaip sot frame to a handie, pre-

Flour Bolx.-John Johnston, Neenah. Wis. This inventioe provides for the movement of the
sieve in any desired direction, and for it to be carried to and fre ellipetially by means of shafts, while the hanger counections pporide for a proper adjustment of plas the peth through which the sieve lo carried may be varied woconding to the requiremente of the materies to operate an. In a firther pateot the same inventor
athowe s abaking boit havisg some of the seme general featarae. with a swiogiog hopper aproe or plate, and apron ar plate, and impperting a elrealar or elliptical appoo ar plate, and imp

Vericle Wrigel - John O. Leck, proseching ende of the felly mections, with onsced teeth stapted io laterlock when brought topether, with a lociened, can be ertwibout heatiog or eltrinking, and
DOe yOR LOO CARs. - Robert J.
TDompeos, Grasdin, Mo. Combined with the boleter of croes beam of the log carrier are dows pivoted near the apposite eede of the beem, panh hems being con.

operating lever with the pivoted ends of the togegle levees, whereby the logs mayy be retained in position and expeditionaly melosed.

Wagon End Gate, - William R. Watk, somerville, Tenn. This is a simple and durable fastening for locking the end gate, the invention coin
disting of a shaft mounted to turn and alide fin the en gate and having a fred bead adapted to engage recess in the cleat holding the end gate.
Wagon Bed.-This invention, also by the above inventor, consitsts of Le-maped metaillie
clastio mecured to osch alide of the wagon bed and form. ing a guldeway for the end gate, the cleats oach having at lis outer end a bolt pasilig through the bed proper and a nut acrewing on tie lower and af and
Hoisting Atrachment. - John F schalts, New York City. This invention relates to a
 alevator attachment capable of belng transformed into dideboords avd an extratailboard, when not in use ase ady, Scappoldine.- Adolph Bitterly
Ottawa, ill. This scaffold is made with two triangular egs or frames, having crows rods between their ends and removable boita at their adjacent narrow ends, with
ther novel featares, the coostruction being adapted other novel featares, the eonstruction being adapted
for building chimneys, plactering, painting, ete., while or buildigg chimneys, plactering, painting, ete, while
BAG
Bag Holder. - Frank A. Brown, alled, and is made of wifes bent to form two ouatwardly and downwardly projecting side arme, terminating in hooks, and twisted and bent ic the rear, forming loops, with a back haviag apper and lower extensions, the
device being sapported fin position simply by hanging it upon a naill or the edge of a bib.
Hinged Handle.-Jacob Gerstle, Port and, Oregon. This invention provides a binged handle dexigned for attachment to frying pans and other
cullinary veseele, the hadie being adapted to fold down In compact form when the vesel is not in nes, while it
can be opened out and held in rigid position by a simple movement of s silding fatener.
scientific american
BUILDINC EDITION.
MAY NUMRER.-(No. 48.)
table of Contents.
Elegant plate in colors, showing elevation is perapective and foor plane for a dwelling coetin
four thousand dollars. Page of detalle, ete.. Plarte in colors of a mommer cottage for one thonsand two ho
Deaign for a bank bullding, with plan and view of
interior.
Perspectuves and floor plans of an elecant resi-
dence at Bell Haven Park, in Groewwich, Conn. $\$$. Bdwin Tobey, Boaton, Mesa, architect. A mountain cottage lately erected at 8t. Clood,
Orange, N. J. Elevation and foor plane. ArchlOrange, N. J. Elevation and foor plana. Archl-
tect M. Artbur D. Pickering, New York. divelling at springtield, Mass. Plans and per-
spective elevation. Cost eight thousand five hanspective eleva
Engraving ahowing perppective elevation of a cot-
tane erected at Roeville, N. J., at a cost of aix thosesnd seven hundied and afty dollors, Floor
plane. F. W. Ward, architect, New York. Ilastration and floor plane of a combined school hoose and country cottage erected at 8L. Clond,
Orange, N. J. Arthur D. Pickeriag, New York, Orapge, X.
architect.
residence at \&pringleld, Mass. Perspective ele. ration and floor plans. Cost three thousend ify
hunded dollars. J. D. \& W. I. McKnight architects.
A cottage bailt at Roseville, X. J., for six thousand evess hundred and afty dollars, Blevation and foor plans.
A cottage at Holyoke. Moec, lately orected for
Howard A. Crafts, at s cost of three thoosand one froward A. Crartu dellare.
Rew of Auburndale Station, Roaton and Albany
Raiload, with plan of atation grounds. H, H. Richardeon, architect. is bellaneoons Contenta : The final payment ciause - The stanford tomb. - Experiments with The improved "Economy" farnace, Hlusitrated. Thidson, N. Yo-Wrought fron and cement inined pipas, illustrated, -Sheathing and lath combined,
illoutrated. - Artistic wood mantels. - A new illastrated. - Artistie wood mantels. - A new
ventiliating furnace, illostrated. - Creonote wood ventiating Parsace, Mustrsted.-Creomote wood
preerving saline,-Large trees.-Rotary eutung cools for working wood, illostrated.
The scientice American Architects and Bailders is centa. Forty larre quarto papen, equal to about two hundred ordinary book pares: forming, practically, a large and splendid Magamsir or Anchirgo
pens, riehly siorned with elegant plates in colors and Wth Ane eneravings, illnetrating the most hileresting allied enbjectio
The Follions, Richnees. Cheapoese, and Convenience of any Aretitectaral poblication in the world. sold by

wi Broedway, Kow Yo
ßusiness and æersonal.
The clargefor Inemtion under als head is One Dollar Advertirmenta mued is reesind at publicalion offie av carly as Thuraday morning to appear in next iense.

Wanted-A young prectical machinias, with some
technical sebooling and experience in buildiag textlie machinery, especialy moolen cards, to take full charse f a machine ahop. Good poaition and anary guaranteed
othe right man. Address R. Z., 4 Poot Omloe, Phila delphia, Pa.
Model engine castinge for sale. Send for circular
Lowell Model Co., 170 Merrimack St., Lowell, Mass. Lowell Model Co., 170 Merrimack St., Lowell, Mase. Special facilitiee for manufacturng light machinetry,
hardware, and novelties. Btampling, pressorork, punebes. dies, and special Loole. Correspondence
Walras leather, hippopotamus, giraffe, elephant, and Welo for polishing. Greane, Tweed \& CO , New Yort. For the best Hoisting Engine for
adress J. S. Mundy, Kewark, N. J.
Gaild Garrison, Brookiyn, X. Y., manufacture team pumpe vaounu pumps, vecuem apparatos, alt aps, acia blowers, alter press pumps, etc
Kagineers wanted to send their addresses and receive tree a \% cont book, "Hints and Sugkestions for 8team
Users." Lord \& Co., 118. 94h 8t., Philidelphias. Pz. Steel same stampe (1-18, 382 , or $1 / 6$ is. letters), 18 sc , For the latat improved diamand proapecting drille For the lateat improved diamond prospecting drille For beat casebardening material, address The Rogern Water porinication for coltes, mand for circuiar.
 Automatic catole, Ball Bhgine.- Ball Engine Co, Erie, Pa Premes a Dies. Ferracate Mach. Co, Brideeton, N , The Holly Manufacturing Co.n of Lockport, N. Y. dil send their pamphlet, deeceribing water works maSerew machines, milling machines, and drill presess. E. E Garrite \& Co, Laight and Canal streets, Now York Perforated zinc, iron, and steel for threehing ma-
ehines. The Robert Aitcheson Perforated Metal Co.. Iron, steel, Copper, and Bronze Drop Forgings of
arery decoription. Billinas \& Spencer Co. Hartoryin Conn.
Steam Haznmers, Improved Hydraulic Jacks, and Tube Frietion Clutch Palleys. The D. Friebie Co., N. Y. city "How to Keep Boilers Cleas." send your addres The best apfec rosaters, coolers, stomes, siparios, The best Coffer roasters, coolers, stoners, separators, peaberry, machines: also rice and macaroni machinery.
are bullt by The Hungerford Co., Broud and Front Ste., Lathet for catting irregular forms. Handie and spole Blake's belt studs. The strongest fastening for leather
and rubber belts. Greene. Tweed \& Con, New York. Six perfect atting shirts to order, 87.50 . Delivered
anywhere. Perfect Clothing Con, N. York. P. \mathbf{O}. box 2838 For steel castinge of best quality, write the Buffalo Spllt Pulleysat low prices, and of name strength and Wpoarkance as Whole Palleys. Yocom k 8on's Shaftin - Send for new and complete catal and other Books for mile by Mann \& Con, zol Broadway,

InNT8 TO CORRESPONDENTS.
asmes and Address mose accompany, all lettere,
or no attention will be paid thereo. This is for our
information, and not
Teferences to former aricies or answers should
give date of paper and page or number of question

some answers require not of litule research, and
though we endevor to reply to all, evitor by lete
or in this department, each mait take his tom.
Speelal Wristen Information on matters of
persomal rather than generai intercat cannot be
expected without remuneration.
selentine American Supplements, referre
to may be had at the oflice. Trice 10 cents each.
aooks referred to promptly sapplied an recelpi
price.
Minerals aent for examination should be distinetly
marked or labeled.
(872) E. T. W. asks for the receipt for oarbleising giass. A. It masy be done by painting of
y pieking up color from the surface of water. For fall deseription we refer you to articles on marbielzlag wood and paper in sponse' Wor
veries, which we can supply for ge.
(878) W. I. L. writes : I wish to contact siae with glass to bear considerable pall without part.
ig. Can yon sogrest an imexpenaive cement, compoiftion, or yony mbletance that will answer the parpoee? 4. Many receipto are given; 1 pound of sheilac diseolved ation of gotta percha in bisaiphide of carbon, will dry quickiy. A slow-drying one mesy be made thus: 2 ounces lick sine solution, 1 ounce linseed ofl varnish or 3 (874) A. F. J. aske how to find the angth of a chord when the length of the are and radias
agives. I want to putt
and is ziven. I want to put 16 pieces together to form a
circle of 0 feet diameter. Also how to fid the versed sine, snd what will be the factors of the previlous exam.
plef A. The bett wey io to do th by a table of cirelar
functions. Thas is circle $=\mathrm{Y}=24^{\circ}$. Twice the
aline of one-half this angle is the chard; ine of one-haif this angle is the chord; tin your problem it mast be miltiplied by the radius, 10 feet, piving 45
incles. The cooine of one-half of the angle sibtracted
trom the radine given the versed tine, fal trom the radius given the versed sime, fin your cate
(875) C. W. S. asks how many foot
ponnde are obtsined by the explosion of one pound of
hydrogen gus mixed with the right proportion of air
hydrogen ges mixed with the right proportion
also how many mixed with pure oxygen. pound of hydrogen ges combining with eight pounds of
oxygen gas will liberate 34,170 (Centigraide degrees) anits. This mnltiplied by 1463 (poond degree C grade equivalent in foot pounds) gives $47,940,510$ fon pounds. A mmall reduction must be made in practice
for the heat absorbed in heating the sine for the heat absorbed in heating the sine poonde
of steam produced. The resalt for air will be nearly the same.
(876) E. K. asks (1) what to use to disof is, to ure when cold, which will not preetipitate. want to use as anti-ozidizing eoldering solation
gold. They have some way of diesolving it witho asing hot water, because it reprecipitates. glycerine ar alcohol. I What is the best analyti
qualitative chemistry; that is for all anum A. We recommend \sim Manaal of Qualitative Cl Analyeis," by C. R. Fresentus, 84. a. Can you
me with a watch maker's mannal? A. We can you with Seunier's "Watchmaker's Hand Book," 8 , (877) Punjabee asks. Wh

解 What should attruct and pull throngh s space of $1 / 6$ inch or $\% / \frac{1}{6}$ inch of covered wire should be wound on the magnet? In the Sciewtivic Amenioas, No. 13, carrent volume page 291, yos will And a deecription of ench a magnet so
you requife. \& How many pairz of sinca sed carbons you require. 2. How many pairs of sincca snd carbones
each $\% / 1$ tu. diametar by 6 inches long, all Axed close to gether withoat tonehing, and connected in series, and dinary bichromate in a large vessel containing the of angnet? A. Your proposed anmagement of batter not advianhe, better make 6 or 8 separate cells, eaci plates of the of size or we 10 or 12 carbon rods such ar
of 8 plates each $13 / 4$ lach by $1 / 4$ inclo. This maguet has lost its virtue through having been thrown to one ide in a large store, and $e 0$ neglected for some years.
A litue of ite attractive power remains, but is very feeble. How conld I make it regain its power? I have not the neans of going throogh the ordinary magnetizing proceas, bet I could get the ane of s large dynamo, whic Sis you cosid plesse let me know, and how to go abou隹 in con can rumagnel wo your magnet by placing it
(878) A. B. asks : 1. What weight would neld magnets of motor in SUPFikmesm, No, 641, be
capabie of suataining if nsed as an electro-magnet, with ame carrent as required to run motor?" A. Is depend ipon the amount of carrent ueed. With 6 cells of plung ing bichromate battery it would probably support lin
pounds. I How can I make an induction coil give a direet current? A. By arranging a commutator to cor Fect the currents as they are diecharged from the coil. Is the commatator ooly nereseary for reversing and opping the current of the induction coil?

dootion can take place with a continuous current. 4. Would a ridge of wood left in the center (ubere

 econdary is divided) of the spool answer the parpoee of the insulating material? It would be easier wi. ding. I think. A. It woold answer the parpose if bolledin parafline or wax. 5 , I have pound and a half of size wire inclosed. Plesse state if it will answer purit is rather coarse. 6. Plesse give me the addrese of tome reliable electrical eapply company. A. Consult
our advertising columns for dealers in electrical sappliee.
(879) Interested writes: 1.1 have a gold ing which has been mear sulphar; the latter darkened
ine ring, in the engraving particuiarly eo. What shall e ring., is the engraviag particuiarly to. What shal
do to restore it to former celor withont injuring stone. which is a cut "tiger'seye "? A. Polieh with a brush, ing whiting, soap, and water. 2. Is there any simple preparation that can be put on a photographic proof to phite of soda, It shonld properiy be toned, but is gen-
erally not dark enough to give good results. Many ormnief for toning have been given in our columns and recelpt for sivver ink, hat cannot find it. Can you give formala for same? A. Rab up siliver
bronze powder with honey and water.
(880) E. M. writes : I have made Wimsharst machine, described in Supplswsmr, No. Cracked the glass; could you give me a formula for a rpose a plece of thin leather between the glaes and its support, The leather should not be saturated with the cement, as
very rigid.

(881) E. S.-You can run the dynamo | wecribed in Surpliseswr. No. coi, by means of boree |
| :--- | power, by charging a storage hattery, provided yon ale

bie to keep up a moderately even apeed. It will ake bout 5 or 6 hours to charge the battery. Oitaie Accumulators, price \&s.
(882) N. T. G. asks (1) what ingredients mpose the liquid Ink eraser need for erasing blots, ete from paper. It is used with a camel'
onalis.
of one or more kideds of seld.
now the particalar eraser yon refer to
has use a solution of oxalice seld in water, remoring e ligaid from paper with a blotiter, and making
two applicatlons, or two applications, 2 , A receipt for makionsor for
ohat we And sold by agente through the countr, for

June 8, 1889.]
tome nee. The solder is melted with a common match. . The fusible metal solder sold by ped
(883) A. J. R. asks : What is the cheapest way to transmit s horse power 150 feet, to ase it
cutting foed to ill a sillo? I uee it but a fow days each year. A. For only temporary une the cheapest means fine) running over grooved palleyn as of feet in diame ter. The pulleys may be made of pine wood and When not in use the rope can be takon off and stored sefe from the weather.
(884) J. W. B. - Stains on a ceiling thould be carefully scraped eaough to take off the old whitewach, and wached with elean water before re-
whitewahing. Then whitewash with good white lime water with a litule white glue disoolved in the water. (885) C. W. G. writes: I have a griddle which 1 clean every morning with sapolio and a acrub-
bing brush, rabbing 15 to 90 minutes. The face is full bing bruek, rabbing 15 to 90 minutes. The fece is full
of maill ridges loft from the grindstone. What can use that will give it a amooth face? A. Rab the meta with a piece of leather wet with flour of emery and (886) J. E. L. writes : Will you let us know of a simple method of preparing chloride of silver,
and how the powdered form is changed into a solid that and be moulded? A. Diseolve silver coin in nitric acid, warm the eolation, and add liydrochloric acid and
filter. The solld matter is chloride of silver. The altration shonld be done in a room as near dark as posaible. Allow it to dry in the dark. When all moisture
hes eraporated, it can be melted at a low red hent and cast into any desired shape in a mould. The moald may be of varioos materinls,
board if the heat io kept low.
(887) F. S. M. aske : Would a plunge battery of four cells, with a capacity of $11 / 6$ quarts of
fluid per cell, and with zincs and carbons 5×6 inches furaish any more power to run a motor if changed into s hattery of elght cells of half the size per cell? Whac most power? A. The proper arrangement of the cells
depeads on the motor ared. The four cello arranged in eries onhould work an ordinary small motor very nicely. Do not divide the plates and produce the eight
cell battery. Procure a low reistance (1 to cell battery. Procure a low r
motor and use the larger cells.
(888) C. E. P. asks how and by what miners, and we run off large quantitites of clay, and I might at the same time save the aluminum with perhaps asmall extra expense. A. Aluminum can be extracted from clay by the use of metallic aodium or by the electric furance. There is no way practicable for you, as it io an expensive and diffcult operation and only availa-
ble for experienced chemists. Richards on Alominum sives details of processes; this we can supply for \$a.so by mail.
(889) R. M. P.-Ordinary house refriger The drainage is througha half inch pipe sealed. For Cen or twenty thousand pound refrigerator a a inch pipe
with seal is large enough. There is nothing suitable for the inside of refrigerators but metal, which may be sine or galvanized iron, of which a defector and drip trough
may be made to catch the water of condeneation falling from the bottom of the ice chamber:
(890) W. D. M.-The force of the tidal motion on the flow and ebb are contrary and balance (891) F. MeF. - Violin varnish: Die oive 12 parts sandarac, 6 parts shellise, 6 parts mastic 3 parts elemi gum, in iso parts slcohol. Warm when dissolved and add 6 parts Venioe turpentine. Color to blood gum.
(892) H. M. writes: In forcing water through a hose will the pressure be the same at the dis.
charge end ae at the pump end? A. The pressure will not be as mach at the discharge end of the hose as at
the pump. The motion of the water through the hose nh which retards the fow. of the hose is closed, and with no movement of the
(893) O. A. P.-For a coloriess laequer dissolve bleached shellac in pure alcobol, settle and de-
cant. Muke the lacquer vory thin. The nasal lacquer for brase is made with ordinary shel
(894) E. D. asks : Will men peddling license or tax? A. Many towns or connties roquire cense is enforced, though this has bees the sabject of many sults, and has been declared unconatitutiona reept as a police regulation enforced alike apon citt
(885) F. R. asks the ingredients used, and in what proportion, ta making hard oil antsh. A. oil boiled with 150 parts litharge and 90 parts paiverized ninium. Boll antil it turns brown, then add 500 parte
pulverized amber melted fa 00 parts lineeed oll. Boil and stir for a few miautes, cool, settle, and decant th
(896) J. H. A. asks : What is the compo tion of the ikin colored material which dentists use in see Scisstificic Amzucas Supplizesint No, wy
(897) J. B. S.-The height of the atmodively known. The hilghest point jet sttained by balloon is about 5 milie. The thinnest sheet copper and welghe 288 pounde to a square yard. Its breaking train is about mpo pousds to one lisch widih.
(898) F. G. D.-Steel springs are temthe oill biazes, then cool in out oil on the sarface antil cas Surplemext, No, 30, "How to Make and Tomper
(890) A. P. asks: Is it possible to hatch chicksect chickens occaionally broaght out. They generally
cher
(900) J. A. S. asks whether there is any and not kimpair tise action so a washing agent in the vene can be cothes. A. No sach agon! prifeation with bichromate of potash and suiphuric acid.
(901) C. T. E. writes: 1. I spilled some kiad of chemical apon some cloth goods (probably sulsome India ink and succeeded in removing the red color, but left a shiny apot which showed through the ink, the chemical leaving a glave. Is there anything I could A. Wath the spot with ammonia and water. 2. What will bleach out an ordiosary iniched photograph, learing ink lines which have been drawn over the picture?
What is a eliver print? A. Solation of mercaric What is a siliver printt A.
chloride (corroive sublimate).
(902) C. G. asks : 1. Is black a color? If is is not, how is it proved? A. Black is the abeence
of colors. This is evident, becanse when light, the blackness. see S 2. Is there anything that if yoo pat it on your bail while fishing, will draw the seh? If so, what is it? A. We know of nothing that has any resi value for this
parpose. A. What is smallaget A. A name for celery parpoese. at What is
(Apium graceoleus).
(903) H. J. 8. asks (1) how to make a inquid that will oxidize sitver a glosey black by dipping
amall silver articlee in the liguid. A. Use a solution of sulphide of potassiam; polish metal before, and rab with a soft rag or chainois after inmersion. 2. How to
make a ligaid that will oxidize copper or oroide by dipping, to imitate bronsef A. Use the same bath, bat olive oil, and let the weather do the rest.
(904) M. H. \& Co. ask for a recipe for 5 gallons soff water, 2 pounde tartaric acid, 25 pounde with the bung out, and after 2 A hours stir them well together. Add 3 gallons apirits, hang up the cask, and
lewve for 48 hours. 0 . Water 100 gallons, honey 5 galons, powdered catechu s ounces, alum oances, yoa if poseible, then add bitter almonds 1 / pound, cloves $1 / 4$ pound, barned sugar 2 pounds, whisky 9 gallons. If too
iharp add honey or sugar, if too sweet add tartaric acid. harp add honey or sugar, if too sweet add tariaric acid. (905) H. P. B. asks (1) whether Portland enment or piater of Paris would not do (for light work)
In making the gis funace described is Sciswrip Amenions of May 4, 1888, page zrs. A. Nothing is good aubetitute; try to get pipe elay at the drag store
try mixing wood or coal aeboes and sand with as little try mixing wod or coal aebeo aud sand with as itthe
Portiand cement as will hold it together. 2 Which of the previously named substances would give the best cement is the beat and may answer for low heats.
(906) J. B. O.-The powder sent may be a matural deposit of infusorial silica, Use powdered pumice stone as a poilishing and clean
will got probably equal satifefaction.
(907) Theo aske what to use to remove an or sunbarn. A. The following lie recommended ounct; nee water or elder flower water 12 ouncesp; mix We doubs the efllcacy of any application except such as will canse the oater layer of the ekin to atrip oti,
anch as the extract of cashew nuts. Rven anch violent application does little good if the skin is re-ex. poeed to the sun, as as.
(908) S. D. M. J. Co. writes : Please ive us in your Notes and Queries; a recipe to stri phuric actd 4 poonds, nitrie aeld 1 poond, water 1 pint. The micture mast be made gradually, adding the sal. phurie acid firat to the wator, and ndiding the nitricacia and mast be removed from the bath the instant the ickeling is atripped.
(909) S. K. A. writes : A certain writer ays: "We were in a kind of chryaniltic condition." He efers to the state of a chrysualis. 1. Is hise nse of the
orit chrysalitic proper or sanctionablep A. W hould be inclined to admist the word and the use made It as allowable. "Chrysalid" is given by Webster as the adjective. 2. In good wage, in if proper for of a line, Wor., carrying the balance of the word over next line, as though it were a lire sylabie surrority, in ook form, on correct punetastion and the beat usege of the Englieh language, thast would he an aid to com
positons? A. We refer yon to Hills Manaal of Social and Basineas Forms. $\$ 8$; aiso Roget's Thesaarus of Kogloh Worde and Pluraces, 89.50 , which we can mend by mail.
(910)
(910) F. W. asks : In Scientific Ameri-
 Itave to lay about so,000 bemlock this year. It think inclised to recommend iron sulphate, as repeated rainfalls would tend to walh it out. For shiogles somethiog more linsoluble would seem better.
(911) J. B. asks: 1. How much presare will mercary exer in a tabe y/a ioch diameter and 10 inches long, throagb expansion? A. There is bardly will licerease natil it would burst nlmost any thbe that
did not expand sa rapidily as itself. This for a chauge mercury would exert a prosare of $9,50 \mathrm{lb}$, to the aquare inch. But as the containing vesocl woold ex what less, but still very great. 2. Is there any soll 3. What would be the coot of the magnet deseribed in Suisntific Amenioas of May 11, 1880? A. Abouid /wenty-dve dollise if you do some of tho work. yourrelf. ing newing machines, and about what woald they coest Thich we can send by mail for 10 conte. (912) H. W. S. writes : not falling one of a be boand drying and shrinking away from the knot by he knot drying and shrinking away from the board A. We believe it is due principally to ehrinkage of the
nnot. 2. If a hole was bored in a dry board, when the board became water-soaked, would the bole become maller or larger in diametery A. The bole in the wet board was dry.

TO INVENTORS
An experienee of forty yeark, and the preparation of
more than one hundred thousand applications for pe tente at home and abroad, onable us to understand the ams and practios on both continenta, and to possess un yyopsis of the patent laws of the United Btates and a contemplating the secaring ot applicastion, and perwon at home abroad, are invited to write to this offioe for prioe
Which aro low, in acoordance with the timea and our

INDEX OF INVENTIONS

For which Letters Patent of the

United siates wore Granted
May 211889
AND EACH BEARINE THAT DATE

Alarm. See Safe alari

 200, 30

anan

Frame. Soe Clock trame. Farnace. See Smoke and gas consuming fur-

 Grinding shovel blanks, machine for, J. I. Woll.
Grinding the outters of wood eatink machioes, machine for, O. A. Winter...............
Ouard. See Candle guard. Catte guard.


```
Handi., see. Tool handie.
```


Heater. gee Water heater.
Heddies, machine for making wire, X, Rabrayne.
Heel trimming machine, C. W. Qlliden....
Hinge, loek, J. Wolf.....................
Hinge mortiser, W. Cooper
Hinge. apring, D, \mathbf{M}. Holt...
Hinge, apring, C. Zattan...
Hinge, apring, C, Zattan...
Hinged handle, J. Gerstie

Hoe, K. J. Gates..................
Hoisting apparatas. F. MeMahon
J. F. Behnilts............................... ans. older. See hag holder. Colter hiolder. Peeel

0
 8 0 . $=$
Alkall, reoovering, spent. V. G. Biloede.

40380

Arm rest, A. B. Diek.

xle box for locomotives, r. A. Carison
xxie lubrioator, W. Gur, Dancelis \& Costiey Ales. Soe Feed ba. Manll bag. Mar hoidor, V. A. Brown......
Bainanco, spences. T. J. Corraing...
Baling press, I. H. Haliam.
Baling proses, ,. H. Haliam.
Bar. See Furnace grate bar.
Basket oover, G. C. Garbrane
Battery. See Galvanic batt natter ouver, G. C. Garboe Gaivanie battery. Beondary bat
tery.

Mit. See Briale biL
Boiler. See Stemm bolter.
Boiler, F. Ladwig.
olt. Bee Mlour bolt.

Book, Iodexed mhippling, Y. C. Johnson (r).
Boot or shoe sile protector, IL. P. Lang.
Box. See Axie bor. Lotter box.
Box for matches, eto. J. Y. Marshall..... Box making machine, , E. Arat....................... 403.ens
Brake. Bee Locomotive ariver brake. Power Brick or tule cutting machine, E. M. Burr an
draw, J. M. Orford........................... ensen
and
Brush, ,, L. Loonen.....................
Bruah, reservoir, W. H. Underwood.
Buckli, and bock band hook, K. Mung
Bundie carrier, J. M. Rooebrooks....
Burner. See Gas burner.
Buraer tip or plliar, W, M.
Button loop, E. Plekhardt
Button setting machine,
Cable erriper, k. Dainty
Call and

Candle guard, H. Bove.......
Candy pan, J. . Magrader.
Car coupliag, R. I. Breth.
Car coupling, A. H. Grant.
Cr
Car coupplios, H. P. M. Mooday...............
Car coupline, C. A. W. W. Wooley
dumping, J. M. Mifrod...
ar, dumpling, B. BeA Ardie.
Car for transporting frati, F. M. Barber car spping. C. T. Bethoen.....
ar starting devioe, E. Fale
Cars, center berting.
Schoen...............ate for railw

Cars, dow attachment for log, R. J. Thompanom..
Cars, stake pocket for, C. T. Sceboee...
Carding engines, drivink meehanism

Criniage pprink, J. Hironimue.
arrier. Bee Bundle carrier.
rt, roso, W. E. Baris.

 s
§rientific American.
[June 8, 1889 .

A New Book on Assaying． The Nereat and Beat in the Engllah Language n Leads all othen！
JUsT 玉ロADY．
THE ASSAYER＇S Manual

 HENRYY CAREY BAIRD \＆CO．， $\mathbf{8 1 0}$ Walant St．Philladelphia，Pa．．V．B．A． ARCHIREYTRLL BOISS． Useful，Beautiful，and Cheap．

 Antions． rork simoormation thenero volumenes coatain rooders the

 Hon and ayproximato cose Tour boand volumes aro now roady and matr bo on
 MUNN \＆CO．，Publishers， 361 Broadway，New York

KOO LOSSOMS
 BUSINES厂：

Something Entirely New． 20，099 sopies sold in Elx monthe one of the moot

SEYMOUR EATON， 50 Hromfleld street．Boston，mass． The Paris Exposition－－Illustrated．

 Cunnde co．，36i nrondwny，new Yort

PERFECT NEWSPAPER ILE

 The Koch Patent File for preerring nourpapers，Massi erirs ontwio wiblee to preservo the paper．Addrees

New York Belting and Packing Co． John H．Cheisver，Treas oldest and largest manafacturers in the United states VULCANIZED RUBBER FABRICS RUBBER BELTINC， Packing，Hose，

Vulcanite Emery Wheels，Rubber Mats，Matting \＆Tread

 The Nadianal Galwatic Bathery

DO YOUR OWN PLATING ROPE TRANSMISION OF POWER

Barnes＇Patent Foot Power Machiaery，B，
Workens or Wood on Metal．

hodes＇

THE RICHARDS OIL ENGINE

Universal Angle Union Patrextred．
Combining an elibe

 SERPOLLET＇S STEAM GENERATOR

PULLEYS．Cheopest，Lishtest，，na Mond，Madoby

PIPE COVERINGS
Absolutely Fire Proof． RRIDED PACKING，MILL HOARD，SHEATHING，CEMENT，FIBEE AND SPECLLTIES
 TOXICOLOGY，PRESENT POSITION

USEFUL BOOKS．

 BRIDGE CONSTRUOTION，DEVEL Rill

BARREL，KEG， Hogsshead， STAVE MACHINERY． Trues hoop Driviag．E．\＆B．Holmes， Clirk＇s Noiseless Ranber Frack Wheels Rubber Furniture casters，etcialagno froe DEEP KEEL AND GENTER BOARD

EVEN THE BROWNIE MAKE PHOTOGRAPRS PHOTOGRAPHIC OUTFITS FOR AMATEURS． Send for our New Hustrated Catalogue and
copy of Modern Photograply． Rochester Optical Co．， IB AQueduct St．，Rochester，N．γ ． Shepard＇s Now $\mathbf{\$ 6 0}$ Screw－Cutting Foot Lathe
 TO BUSINESS MEN

NCKEL PLATING \＆POLISHING MATERIALS． ZUCKFR8GEVEH1 CHEMICALCO NEW YORKUSA

IRON AND STEEL．ANALYSIS OF，－

 ROYAL MIUROSCOPIC SOCIETY．－
 BASC MICE，or VERMIN I月 THE GREAT TELESCOPES OF THE

The S Sienific Ameican

ROCK BREAKERS AND ORE CRUSHERS

The pricee of the diferont ppobilinetione in the United
Statos，Caenad，nid Mexico are at follow？

Tho seientice American suppliement（meealy），ong ano
The scienuise Amerieas，kipon maiton（mommiy）
 MBINED Ritits． The Seventice American ana 8uppiement，© ©
 This ineludet pootese，which we pars Revil br poatel MONN \＆CO．， 361 Aroadway，New Yorts．

Both the Promes and mation ourm star Hock
 Frico of fie Prame

 RIDE CYCLESS! viccous ales best:
Bicjes, Trifycles, and safties. seod for froe lilusutrated
Catalosue. THE COPYING PAD.-HOW TOMAKE
 Answa
TUE KODAK CAMERA

mosied fon he.
The Eastman Dry Plate \& Film Co Roohester, in. Y. Iis Oxford stop London.

DRT ARR REFRIGERATING MACHINE
四

 mUNE \& Co., Solletitors of Patente,

 THE QUTTA PERCHA AND RUBBER MFG. $\mathbf{c o}$. 36 Warren Street, New York. THE BIFFEL TOWER - AN EXCEL

Stocko and Dies tor Plipe, Bottos, and Brauen Plom Wrencheer. Pipe Viese, Plipe Cattorts, ete.

GRAPHOPHONE AND PHONOGRAPH

 Hard Rubber Pump Valves

 AEW CATALOGUE VALUABLE PAPERS

IN Aspoial size of Fiter Ent
FITTHR. BRIGHT SPARKLING WATER LAREE SIZES FOR MILLS AND WATER WORKS. NATIONAL WATER PURIFYING CO.

$$
95 \text { MILK ST., BOSTON, MASS. }
$$

This Company owns the Letters Paten granted to Alexander Graham Bell, Mareh 7th, 1876, No. 174,465, and January 30th, 7th, 1876, No. 174,
1877, No. 186, 787 .
The transmistion of Speech by all known The transmission of Speech by all known
Corms of Eleetric Speaking Telephones in frius of Electrie 8peaking Telephones in
fringes the right secured to this Company by the above patents, and renden individual user of telephones not furnish ed by it or its licensees responsible for such unlawful use, and all the consequ
thereof, and liable to suit therefor.

Scientific Book Catalogue

MANGANESE STEEL AND ITS PROP
 PATENT
JACKET KETTLES,
 ESTABLISHED HALF A CENTURY.
 HAVE MANY PATENTED IMPRQVEMENTS NOT FQUND IN THi OTHER MAKES THAT WILL WELL REPAY AN INVESTIGATION By THOSEHHO THE EsTST SAFE Le BESAFE MARVIN SAFE CO. NEW YORK, PHILADELPHIA LONDON. ENCLAND.

 HR STANDARD TOOL CO.

 THE PHONOGRAPH.-A DETAILED

Expose an Immense PMadephla and Now Yort
 ELEGTRO MOTOR SIMPLE HOW TO

Malleable

ฐcieutific Ammricau

gstablished 1846
The Most Popalar Sciestife Paper in the Werld. Only 83.00 a Yar, itcieding Foatage. Weehit.

 Terins or Subberitition.-Ones Trerimsor subseription- One copy of the sciex. postage propala, to any unberriber in the United State or Cannads, on reeelpt of three dollinus by the pab-
 Manters. Wrte for pertertior.

MUININ at CO.,
361 Broadway, New York. TEET
Scientific American Supplement.

 of eogrvinge, many of whithe aro taten from foreser
 Weelig, and Inetudes a very wide rames of contents. in prosents tho most recent papers by omitient writers ia all the prinaipal departments of scienco and the Yatural History, Geoorraphy, irchmology. Astronomy

 sineoring. Aariouture, Horticalture, Domettio Econo
 Hiation
Tie mot tmportant Envinuering Worth, Mechanhums.
 Canamen whe year, or one copr of the scuskrur Al Eaticiny and one opy of the SUPPLEYENT, both malloe
tor
 MUNX \& Ca,., 361 Brondway, K. Y..

Building Edition.

 ampes or mod
Af ppecial fasture bithe presemactioa tin eveh mamber
 ente cont as well as the more expenaive. Dravinge io perpective and in colorer are aliven, together witit fuil

 Arecherecraral pubbliostion in the woria. Bold by all

MUNN \& CO., Publishers,
361 Broadway, New York.
PRINTINE INKS.

[^0]: INO. 701.
 For the Week knalige June 8, 1889. Price 10 cence. For male by all newedealer.

 termine the true time.

 Y. sLECTBICITY, - Mots on the Use of Gelwier', Tubes for deteet-

 thon- Allllatration

 vili. uzpic
 .
 15. Musckllansmove-The Paris Expoatloo-uhe Central wor

 suedy of geter - -

